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Abstract
PET images commonly suffer from the high noise level and poor signal-to-noise ratio (SNR), thus 
adversely impacting lesion detectability and quantitative accuracy. In this work, a novel hybrid dual-
domain PET denoising approach is proposed, which combines the advantages of both spatial and 
transform domain filtering to preserve image textures while minimizing quantification uncertainty. 
Spatial domain denoising techniques excel at preserving high-contrast patterns compared to 
transform domain filters, which perform well in recovering low-contrast details normally smoothed 
out by spatial domain filters. For spatial domain filtering, the non-local mean algorithm was 
chosen owing to its performance in denoising high-contrast features whereas multi-scale curvelet 
denoising was exploited for the transform domain owing to its capability to recover small details. 
The proposed hybrid method was compared to conventional post-reconstruction Gaussian and 
edge preserving bilateral filters. Computer simulations of a thorax phantom containing three small 
lesions, experimental measurements using the Jaszczak phantom and clinical whole-body PET/
CT studies were used to evaluate the performance of the proposed PET denoising technique. The 
proposed hybrid filter increased the SNR from 8.0 (non-filtered PET image) to 39.3 for small lesions 
in the computerized thorax phantom, while Gaussian and bilateral filtering led to SNRs of 23.3 
and 24.4, respectively. For the experimental Jaszczak phantom, the contrast-to-noise ratio (CNR) 
improved from 10.84 when using Gaussian smoothing to 14.02 and 19.39 using the bilateral and 
the proposed hybrid filters, respectively. The clinical studies further demonstrated the superior 
performance of the hybrid method, yielding a quantification change (the original noisy OSEM image 
was used as reference in the absence of ground truth) in malignant lesions of  −2.4% compared 
to  −11.9% and  −6.6% achieved using Gaussian and bilateral filters, respectively. In some cases, 
the visual difference between the bilateral and hybrid filtered images is not substantial; however 
the improved CNR score from 11.3 by OSEM to 17.1 and 21.8 by bilateral to the hybrid filtering, 
respectively, demonstrates the overall gain achieved by the hybrid approach. The proposed hybrid 
algorithm improved the contrast, SNR and quantitative accuracy compared to Gaussian and bilateral 
approaches, and can be utilized as an alternative post-reconstruction filter in clinical PET/CT 
imaging.
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1.  Introduction

Whole-body PET/CT imaging has become a valuable tool for diagnosis, staging and monitoring response to 
therapy in clinical oncology. PET commonly suffers from poor spatial resolution and high noise level, which 
adversely affect lesion detectability and quantitative accuracy. Noise reduction is of paramount importance in 
protocols with very short acquisition times or low-dosages (e.g. paediatric PET protocols), and dynamic studies 
with short frames for fast-decaying radiotracers or multiple pass whole-body PET imaging (Karakatsanis et al 
2016, Yan et al 2016, Rahmim et al 2018). Statistical reconstruction techniques, such as the maximum likelihood 
expectation maximization (MLEM) algorithm, are capable of modelling the major physical degrading factors 
leading to signal loss and noise. However, since image reconstruction is intrinsically ill-posed, these algorithms 
converge slowly and amplify noise as the iterations proceed (Snyder et al 1987). Post-reconstruction filters or 
statistical reconstruction algorithms with noise modelling are employed to enhance the signal-to-noise-ratio 
(SNR) in PET images by imposing homogeneity of neighbouring voxels (Nuyts and Fessler 2003, Nuyts et al 2005, 
Qi and Leahy 2006, Reader and Zaidi 2007). However, these methods overlook the fact that tracer uptake can 
vary abruptly from one voxel to another for prominent signals emanating from malignant lesions or boundaries 
of organs/tissues. This can lead to smoothing out important signals and meaningful features (Mohammed 
2008). In spite of improvement in SNR owing to substantial noise reduction, increased bias in quantification of 
radiotracer uptake is observed, particularly over sharp edges.

A potential solution to this problem is to use edge-preserving filters in the spatial domain, such as the bilateral 
(Elad 2002), total variation minimization (Sawatzky et al 2008) and anisotropic diffusion filters (Perona and 
Malik 1990), which are capable of suppressing noise while preserving prominent signals. These approaches rely 
on the estimation of the prominent boundaries to penalize smoothing factors over the edges. This task can be 
more effectively achieved by exploiting the complementary information provided by high resolution anatomical 
images available on multi-modality imaging systems, assuming that the exact boundaries of lesions or organs 
can be extracted from anatomical images to enhance the performance of edge-preserving filters (Lehovich et al 
2009, Vunckx et al 2012). However, anatomical boundaries do not always coincide with boundaries on emission 
images and, as such, inaccurate anatomical priors may cause artefacts and quantification bias in corresponding 
PET images (Vunckx et al 2012).

Alternatively, PET denoising techniques based on noise discrimination in the frequency domain through for 
example wavelet or curvelet transforms have been demonstrated to improve both the quantitative and qualita-
tive aspects of noise filtration (Turkheimer et al 2000, Shih et al 2005). The curvelet transform (CT) features high 
sensitivity to anisotropic elements due to superior directional sensitivity over wavelet transform. This feature 
enables the capture of additional geometrical information, in particular for anisotropic structures, and con-
sequently more accurate image representation (Shan et al 2009, Le Pogam et al 2013). The curvelet transform 
provides a sparse representation of structures with the second-order differentiable singularities, where edges 
are represented with much fewer coefficients in comparison with wavelets for a given accuracy (Shan et al 2009).

Overall, the image denoising task can be operated either in the spatial domain using edge preserving methods 
or in the transform (frequency) domain using curvelet or wavelet shrinkage. Spatial domain methods preserve 
strong features, such as prominent edges; however they have suboptimal performance to recover low-contrast 
details (Knaus and Zwicker 2013). Frequency domain techniques, as opposed to spatial domain methods, excel 
in preserving low-contrast details and textures while suffering from inaccurate edge denoising where some Gibbs 
ringing artefacts can be observed near strong edges (Le Pogam et al 2013, Boashash 2015). The idea here is to take 
advantage of both spatial and transfer domain filtering to accomplish artefact free denoising while preserving 
low-contrast features as was explored earlier on natural images (Knaus and Zwicker 2013, 2014, Pierazzo et al 
2014, Pierazzo and Facciolo 2017). For the spatial domain denoising, we chose non-local mean (NLM) approach, 
which reduces noise by calculating the weighted average of voxels based on similarities between two patches of 
voxels. NLM was reported to outperform other edge preserving filters, particularly for white Gaussian noise 
(Brox et al 2008, Chan et al 2014). For the frequency domain, we used the curvelet-based coefficients shrinkage, 
which preserves details well.

The aim of this work is to evaluate a hybrid denoising algorithm that incorporates spatial and frequency 
domain filtering to enhance the SNR of PET images. The performance of the proposed approach was assessed 
using simulated, experimental and clinical whole-body PET/CT studies against the conventional Gaussian filter 
and edge preserving bilateral filter (Hofheinz et al 2011).

2.  Materials and methods

2.1.  Spatial-frequency domain filtering
The objective of hybrid spatial-frequency domain filtering is to restore the noise contaminated PET image f to 
its original uncorrupted image Ĩm assuming a noise distribution with a stationary variance. A hybrid method 
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combining the advantages of both spatial and frequency domains can outperform each of them applied separately. 
To this end, the image can be filtered separately in two layers, in which the spatial domain layer retrieves the high 
contrast features whereas the transform domain recovers the low-contrast structures of the image. For the spatial 
domain denoising, edge preserving methods are highly preferable, and as such, the NLM filter was devised for the 
high contrast layer. Given the noisy nature of PET images, the prominent edges of the images are first restored in 
the high contrast layer and then the residual image (defined as the subtraction of spatial domain filtered image 
from the noisy image as formulated in equation (2)) is passed through the transform domain layer. Since the high 
contrast features are already denoised, the low-contrast (transform domain) layer is designed to suppress noise 
on residual images, which predominantly contains medium/low contrast patterns. For the low-contrast layer, a 
multi-scale decomposition approach based on the curvelet transform was adopted. Image decomposition via the 
curvelet features high sensitivity to anisotropic elements and directional structures which enable the extraction 
of additional geometrical information and more accurate image analysis compared to the wavelet transform 
(Shan et al 2009).

The wavelet transform employs basis functions representing both spatial frequency and location. The cur-
velet transform goes beyond this by utilising basis functions that are also localized in orientation (Starck et al 
2002). The curvelet transform differs from the wavelet transform in the sense that the degree of the localisation 
in orientation varies with scales. Wavelets can only capture limited directional information including horizon-
tal, vertical and diagonal features (Shukla and Changlani 2013). These linear directions have limitations and 
might fail to capture effective directional information in noisy images. However, the curvelet transform captures 
directional information of an image based on multiple radial directions in the frequency domain. Therefore, the 
curvelet transform exhibits very high directional sensitivity (anisotropy) as opposed to the wavelet transform 
with highly isotropic elements (Starck et al 2002). The first generation curvelet transform (Starck et al 2002) was 
chosen for frequency domain layer due to its high directional sensitivity and redundancy properties. A number 
of related publications compared the effectiveness of the wavelet and curvelet transforms to encode the image 
features in the transform domain and to discriminate genuine signals from noise. They unanimously reported 
that the wavelet transform is not capable of efficiently representing lines or curvilinear structures, such as edges 
in the transform domain. Conversely, the ability of the curvelet transform to capture the directionality of image 
structures (e.g. curves, lines and edges) enables to represent features using fewer coefficients at different scales 
(Dettori and Semler 2007, Shan et al 2009, Shukla and Changlani 2013). This merit of the curvelet transform 
allows more efficient discrimination between noise and signal due to the redundancy in terms of edges represen-
tation in the transform domain. Given the residual image denoised by transfer domain filter, the estimation of 
the original image can thus be achieved by the sum of the high and low contrast layers outputs. Figure 1 illustrates 
a block diagram of the hybrid filtering algorithm (figure 1(A)) as well as an anecdotal representation of the filter 
performance on a 1D signal (figure 1(B)).

2.1.1.  Spatial domain filter
The NLM filter was chosen for spatial domain denoising and high contrast feature preservation (Buades et al 
2005). The NLM (equation (1)) estimates the original/denoised pixel Hi by calculating the average of the entire 
pixels fk within a search window (denoted by Ω) weighted by the similarity of surrounding patches of pixels p 
centred at i and k.

Hi =
1

Ni

∑
k∈Ωi

fkw (i, k)

w (i, k) = exp
(
−‖v(pi)−v(pk)‖2

h2

)
v (pi) = ( fi, i ∈ pi)

‖v (pi)− v (pk)‖2
=

|p|∑
n=1

(
fi(n) − fk(n)

)2

Ni =
∑
k∈i

w(i, k) =
∑
k∈i

exp
(
−‖v(pi)−v(pk)‖2

h2

)
�

(1)

w(i, k) represents the weight measuring the similarity between the patches pi and pk normalized by Ni (summation 
of all weighting factors for the target voxel (i) located at the center of searching window (Ω)) to ensure that w ranges 
from 0 to 1. |p| denotes the patch size for measurement of the similarity with a fixed size of 4  ×  4. The patches 
of pixels p should be located within the search window (Ω) with a fixed size of 16  ×  16. Typically, the similarity 
is measured using a decreasing function of the Euclidean distance ǁ.ǁ2 between patches of pixels (Buades et al 
2005). The weighting factors contribute significantly in equation (1) to pixels with similar surrounding pattern 
to that of the target pixel. The weighting factors can be adjusted by h parameter which determines the decay of the 
exponential function and normally is set empirically by the user to achieve the desirable degree of smoothness. In 
case the noise amplitude becomes comparable to the PET signal, the weights corrupted by the noise can adversely 
affect the smoothing performance of the NLM filter. In this regard, the weighting factors are estimated from a 
median filtered version of the noisy image to improve the robustness of similarity measurement. The following 
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steps were implemented to perform NLM filtering. Initially, given a noisy input PET image, a median filter is 
applied to generate the median filtered version of the input image. Thereafter, all the weighting factors w (i, k) 
formulated in equation (1) are calculated on the median filtered version. In the next step, the calculated weighting 
factors are used to perform the final step of the NLM filtering process on the input noisy image ( fk) to generate 
the original/denoised pixel Hi. Accordingly, the fk voxels (first line in equation (1)) are taken from the input noisy 
image while the weighting factors w (i, k) are calculated on the median filtered version of the image.

2.1.2.  Frequency domain filter
The 1D wavelet transform provides excellent sparse representation of the isotropic points (image features with 
uniformity in all directions) in the spatial domain; however, in higher dimensions (2D or 3D), the wavelet 
transform results in suboptimal representation of the images with anisotropic contents due to the poor 
encoding/transformation of the curves, lines and edges where the non-uniform orientation of image features is 
ignored (Easley et al 2008). Recently, the curvelet transform has been employed to address this issue since a more 
accurate image representation is achievable due to its high directional sensitivity (Hyder and Sukanesh 2011). 
The curvelet is a multi-scale and multi-directional transform which generates elements indexed by direction, 
scale and position parameters in the spatial and frequency domains (Starck et al 2002). In this study, the first 
generation curvelet transform was employed, which applies a series of ridgelet analysis and the radon transform. 
The discrete curvelet utilizes the wavelet transform to decompose the image into a set of wavelet bands to be 
processed by local ridgelet transform using different block sizes for each scale level (Shan et al 2009). Given the 
image smoothed by a spatial domain filter (H), the residual image to be processed by the curvelet transform is 
obtained from equation (2):

Res = f − H� (2)

where f is the initial noisy image. The residual image is then decomposed by the curvelet transform to obtain the 
curvelet coefficients cj. Assuming that cj is the noisy observation of the original image coefficients sj and the noise 
samples are denoted by εj, we can write:

cj = sj + εj

where cj = (c1j, c2j), sj = (s1j, s2j), εj = (ε1j, ε2j) and j denotes the number of curvelet coefficients. Here, c2j 
represents the parent of c1j curvelet coefficient at the same position but at the next coarser scale (supplementary 
figure 1 (stacks.iop.org/PMB/63/215010/mmedia)). Equation (3) represents the standard MAP estimation of 
the s considering the corrupted observation c. The index j is dropped to improve readability of the equations.

Figure 1.  (A) Block diagram of the hybrid dual-domain PET denoising approach. (B) Sketchy illustration of the principle  
of dual-domain filtering using a 1D signal.
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ŝ (c) = argmax
s

Pr (s|c)
ŝ (c) = argmax

s
[Pr (c − s) · Pr(s)] .

� (3)

If we assume a non-Gaussian bivariate probability density function (Le Pogam et al 2013, Boashash 2015) for 
the coefficients and their corresponding parents as:

Pr (s) =
3

2πσ2
exp

Ç
−
√

3

σ

»
s2
1 + s2

2

å
.

Then the MAP estimator of the s1 can be written as Sendur and Selesnick (2002):

ŝ1 =

(√
c2

1 + c2
2 −

√
3σ2

n
2πσ2

)
+√

c2
1 + c2

2

c2.� (4)

In order to solve equation (4), a prior knowledge of the noise variance σ2
n and the marginal variance σ2 for 

each curvelet coefficient is needed which can be estimated using surrounding coefficients of the jth coefficient. 
Let us define M( j ) as the entire coefficients neighbouring the jth coefficient as illustrated in supplementary 
figure 1. The neighbouring window size is a free parameter to be optimized for the peak performance of the cur-
velet filtering. The noise variance σ2

n can be estimated from the finest scale of curvelet coefficients (HH subband) 
(Donoho and Johnstone 1994) as:

σ̂2
n =

median (|c1|)
0.6745

c1 ∈ subband HH.� (5)

Considering σ2
c = σ2 + σ2

n, the marginal variance of the noisy observations c1 and c2 can be empirically 
calculated using equation (6). It should be noted that the zero mean noise (εj) is added to the original image 
coefficients (sj ) and c1 and c2 are modelled as having zero mean due to the bivariate shrinkage function in 
equation (4).

σ̂2
c =

1

|M|
∑
ci∈M

c2
i .� (6)

Here |M| denotes the size of the neighborhood M( j ), representing a free parameter whose optimal size was 
estimated using the computer simulations described in section 2.2. Given σ̂2

c , σ can be calculated as Sendur and 
Selesnick (2002):

σ̂ =
»
(σ̂2

c − σ̂2
n)+� (7)

After obtaining the denoised curvelet coefficients sj, the inverse curvelet transform is applied and the final 
smoothed image (Im) is created by computing the summation of spatial (H) and frequency domain (L) outputs.

Im = L + H

The curvelet and NLM filters were implemented in MATLAB environment (2015a MathWorks, Inc., Natick, 
Massachusetts, United States). Considering a search window size of 16  ×  16 for NLM filtering, the computation 
time of the proposed hybrid filter did not exceed 15 s (using a double CUP core) for a whole-body PET study, 
which makes it feasible for clinical practice.

2.2.  Simulation, experimental and clinical PET/CT studies
The proposed hybrid method was compared to Gaussian and edge preserving bilateral post-reconstruction 
filters using computer simulations, experimental phantom measurements and clinical studies.

2.2.1.  Computer simulations
The Jaszczak phantom consists of a homogeneous cylinder (100 mm radius and 180 mm length) containing 
six spheres of different diameters (11, 14, 17, 22, 28 and 33 mm). A 3D digital phantom modelling an 18F-FDG 
scan of the Jaszczak phantom was developed with matrix size of 256  ×  256  ×  100 having a voxel size of 
2 mm3 (supplementary figure 2). The spheres were simulated with two levels of contrast, high and medium, 
corresponding to 8:1 and 5:1, respectively. The homogeneous background was assigned an activity concentration 
of 2 kBq ml−1 whereas the spheres were assigned an activity concentration of 10 and 16 kBq ml−1 to mimic 
medium and high contrast situations, respectively. Only photon attenuation was considered in the simulation 
with image reconstruction performed in 2D mode. In this work, the finite resolution of the PET scanner was 
accounted for by blurring the projections using a Gaussian filter with full-width at half-maximum (FWHM) of 
6 mm. As mentioned in frequency domain filter section, curvelet filtering contains a neighbouring window M(j) 
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parameter to be optimized to reach its peak performance. To this end, different window sizes were compared 
using the simulated Jaszczak phantom for 12 setups (two contrast levels and six noise realizations). The generated 
noise realizations produced a noise variance ranging from 0.001 to 0.10 in the background when the image is 
normalized in the range 0–1. Supplementary figure 3 depicts the application of solely curvelet filtering on the 
computer phantom while the neighbouring window varies from 3 to 13 with a step of 2. A window size of 7 was 
chosen for the rest of the study since this led to the highest SNR and minimum bias.

In addition to the Jaszczak phantom, a digital thorax phantom bearing three small lesions of size 
10  ×  10  ×  10 mm was simulated using the same simulation setup with a matrix size of 256  ×  256  ×  100 and a 
voxel size of 2 mm3. The body content (soft tissue) and lung region of the phantom had attenuation coefficients 
of 0.1 cm−1 and 0.03 cm−1, respectively. The lesions were placed in the lung and soft-tissue regions with three 
levels of tumour to background ratios: 4:1 for L1, 2:1 for L2 and 3:1 for L3 (Supplementary figure 2). Eleven 
noise realizations were simulated with added Poisson noise to the projection data by varying the total number of 
counts. The total number of counts in the sinogram was around 1 M per slice generating a noise variance in the 
lung region ranging from 0.001 to 0.1. Image reconstruction was performed using OSEM algorithm with four 
iterations and eight subsets using the Michigan image reconstruction toolbox (MIRT) implemented in Math-
work’s Matlab language6. It should be noted that similar results were obtained for computer simulations per-
formed with a reconstruction resolution of 4  ×  4  ×  2.5 mm.

2.2.2.  Experimental phantom studies
The physical Jaszczak phantom containing six hot spheres, having diameters of 11.89, 14.43, 17.69, 21.79, 26.82 
and 33.27 mm were filled with an activity concentration of 18.4 kBq ml−1 while the cylinder (background) was 
filled with 3.6 kBq ml−1 to create a contrast of 5:1. The total injected activity was 22 MBq. The Jaszczak phantom 
was then scanned on a Biograph mCT PET/CT (Siemens Medical Solutions USA, Knoxville, TN, USA) in list-
mode format with a total acquisition time of 30 min. The data were then reconstructed for different time frames 
corresponding to 10 s, 30 s, 1 min, 3 min, 10 min and 30 min to realize different noise levels. Image reconstruction 
was performed using OSEM algorithm with four iterations and eight subsets including CT-based attenuation 
and scatter correction using the e7 tool (Siemens Healthcare, Knoxville, TN) and the embedded single scatter 
simulation (SSS) algorithm with tail fitting scaling. The reconstructed image matrix consisted of 400  ×  400  ×  45 
voxels with size of 2  ×  2  ×  5 mm.

2.2.3.  Clinical studies
Twelve clinical 18F-FDG PET/CT studies (mean age  ±  SD  =  61  ±  7 y)were performed on a Biograph 64 True 
Point scanner (Siemens Healthcare, Erlangen, Germany) for staging of head and neck malignancies following 
administration of 18F-FDG (371  ±  23 MBq). PET data acquisition was carried out for five to six total bed 
positions (3 min per bed) resulting in a total acquisition time of 15–18 min. The patient weights ranged from 50 
to 91 kg (mean  =  65.75 kg). CT-based attenuation correction was performed followed by image reconstruction 
using the e7 tool (Siemens Healthcare, Knoxville, TN) using ordinary Poisson ordered subset-expectation 
maximization (OP-OSEM) iterative algorithm and the default parameters used in the clinic (four iterations and 
eight subsets). The default post-processing Gaussian filtering was deactivated to obtain unfiltered PET images 
with a matrix of 168  ×  168  ×  205 voxels having a dimension of 4  ×  4  ×  2.5 mm3. Overall, 35 VOIs were defined 
on malignant lesions where the number of lesions varied only slightly between the patients (mean  =  3, range: 
2–4). The lesions were located in the liver, lung, and head and neck. The background VOIs were defined in the 
same regions with the same size (ranging from 0.4 to 18 ml).

2.3.  Evaluation strategy
The evaluation of the proposed approach was carried out through comparison with Gaussian and bilateral 
post-reconstruction filters. 3D Gaussian filter was applied to all studies with a range of kernels from 2 mm to 
10 mm FWHM for computer simulations, experimental phantoms and clinical studies. 2D bilateral filtering was 
performed on a slice by slice basis. The bilateral filter consists of a product of two spatial and intensity domain 
kernels having Gaussian shapes (Paris et al 2009). The spatial and intensity kernels are controlled by two Gaussian 
standard deviations, σSp and σIn, respectively. The standard deviation of the spatial kernel was fixed at 3.8 mm as 
suggested in Hofheinz et al (2011), whereas the intensity standard deviation (σIn) was chosen in such a way that 
bilateral filtering resulted in comparable standard deviation in soft-tissue region as Gaussian filtering. σIn was set 
to a range of 0.1–0.5 considering the images normalized to the intensity range of 0–1.

For the Jaszczak (computer and physical) and thorax phantoms, the performance of the different approaches 
was quantitatively evaluated using the contrast-to-noise ratio (CNR) (Kim et al 2015) for various regions of 
interest (ROIs):

6 http://web.eecs.umich.edu/~fessler/code/index.html.
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CNR =

∣∣µsignal − µbackground

∣∣
… ∣∣σ2

signal
+σ2

background

∣∣
2

.
� (8)

Here, µsignal and µbackground denote the mean values of the target and background ROIs in filtered images, 

respectively, while σ2
signal and σ2

background  are the corresponding standard deviations. The same ROIs on target and 
background regions were defined to have the same number of voxels (supplementary figure 2). Moreover, nor
malized bias and SNR, as formulated in equations (9) and (10), respectively, were used to assess the performance 
of the different algorithms.

Bias(%) =
100

Lr

Lr∑
i=1

∣∣(µsignali − Tl)
∣∣

Tl
� (9)

SNR =
1
Lr

∑Lr
i=1 (µ(signal)i − µ(background)i)

1
Bg

∑Bg
j=1 σj

.� (10)

Here Tl is the true intensity value within the ROI and Lr the number of different noise realizations. σj denotes 
the ensemble standard deviation of each voxel j across the noise realizations and Bg is the total number of voxels 
within the background ROI. For the simulated and experimental studies, the true values of the signals are known 
and, as such, equation (9) can be used to estimate the bias. For the clinical studies, the mean tracer uptake and 
standard deviation in the lesion ROIs were computed before and after post-reconstruction filtering. Similarly, 
the SNR and CNR were calculated for the lesion ROIs using the aforementioned equations. However, the changes 
after applying the different denoising algorithms were computed using equation (11) considering the unfiltered 
OSEM image as baseline (Guo et al 2003).

Change (%) =
µROIfiltered − µROInoisy

µROInoisy
× 100%.� (11)

Contrast recovery coefficients (RCs) were calculated in the experimental phantom study using equation (12), 
where µsignal and µbackground denote measured activity concentrations and Tl and Tb denote actual activity con-
centrations in the spheres and background, respectively.

RC (%) =
µsignal − µbackground

Tl − Tb
× 100.

�
(12)

To demonstrate the added benefits of combining the spatial and transfer domain, the hybrid filter was com-
pared to each of NLM and curvelet filters separately using the experimental phantom study using SNR, CNR 
and bias metrics. For all datasets, manually drawn ROIs were placed on unfiltered OSEM images over identified 
structures such as spheres or lesions and over large homogeneous regions (to estimate the background activ-
ity or noise standard deviation), such as the lungs or liver for clinical studies. The same ROIs (shape and size) 
were placed over each pair of target and background regions. The post-filtering parameters for the different 
approaches were set to achieve the highest SNR and CNR according to computer simulations and experimental 
phantom studies. The free parameters were optimized in a general manner (not for a specific count statistics) 
and the same parameters were adopted for the clinical studies. Different patch sizes and search windows were 
examined to achieve reasonable compromise between smoothing quality and processing time (in particular for 
the search window). The sizes of the search window and voxel patch were set to 16  ×  16 and 4  ×  4, respectively. 
A Gaussian kernel with a FWHM  =  8 mm, σSp  =  3.8 mm and σIn  =  0.3 for the bilateral filter led to peak perfor-
mance and resulted in similar noise variance in soft-tissues or background for phantom studies.

The evaluation of the clinical studies was performed on PET images reconstructed using the default param
eters used in the clinic (four iterations and eight subsets) which involve preset convergence level. To evaluate the 
performance of the different approaches at varying convergence or contrast levels, the evaluation of the clinical 
studies was repeated for different iteration numbers ranging from 1 to 8 with a preset number of eight subsets. 
The CNR values before (unfiltered OSEM) and after post-reconstruction filtering were recalculated for the lesion 
ROIs at the different iteration numbers.

3.  Results

3.1.  Computer simulations
The results for the simulated Jaszczak phantom are illustrated in figure 2 for the noise realization leading to a 
variance of ~1.1. The hybrid approach led to minimum signal and resolution loss contrary to Gaussian and 
bilateral filters as demonstrated in the residual images (noisy image—filtered image). This is also highlighted in the 
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profiles plotted over the six spheres depicted in figure 3. Gaussian filtering led to significant signal and contrast loss 
for all spheres, in particular the smaller ones. Bilateral filtering yielded moderate blurring of contours especially 
for the smallest sphere. Finally, the hybrid approach yielded minimum loss of contrast and blurring compared 
to the OSEM image. In case of high noise levels, the bilateral and hybrid filters led to higher signal fluctuation (as 
indicated in figure 3 for 28 and 17 mm spheres); however the hybrid approach was less sensitive. The profiles in 
figure 3 are plotted for a signal to background ratio of 5:1. The CNR for the simulated Jaszczak phantom with 
medium (5:1) and high (8:1) contrast is reported in table 1 for the different denoising algorithms. The proposed 
approach generally provides better CNR values compared to the other denoising algorithms regardless of the 
noise level and contrast (figure 3). The Gaussian and bilateral filtering failed to improve the CNR for the smallest 
sphere (ROI 1) particularly for high contrast images. The Gaussian, bilateral and hybrid filtering resulted in a 
CNR of 7.76, 8.89 and 17.89, respectively; compared to OSEM images (CNR of 14.46).

The results of the thorax phantom containing three small lesions are illustrated in figure 4. Similar to the 
smallest sphere in the simulated Jaszczak phantom, signal loss and blurring of structures are observed when 
applying Gaussian filtering which led to a significant loss of resolution compared to the two other approaches, 
as demonstrated by the profiles illustrated in figure 5. The profiles depict different levels of intensity and con-
trast loss when applying all three denoising approaches. However, the hybrid approach led to significantly lower 
resolution loss. The qualitative evaluation was confirmed by the measurement of bias, SNR and CNR of the 
ROIs drawn on the lesions (supplementary figure 2) reported in table 2. Gaussian filtering yielded significantly 
increased bias with a maximum value of 36%, while bilateral filtering exhibited better performance and resulted 
in maximum bias (27%) compared to the one observed on the OSEM image (23%). All filtering approaches led 
to increased bias compared to noisy images; however, this trend was less severe when using the hybrid approach 
(maximum bias of 24%).

3.2.  Experimental phantom studies
The results for the experimental Jaszczak phantom filtered by the different approaches are illustrated in figure 6. 
The list-mode PET data obtained from 30 min scan were reconstructed corresponding to different acquisition 
times to realize different noise levels. Considerable resolution and signal recovery can be observed in images 
filtered by the hybrid approach (figure 7). The Gaussian filter led to important loss of contrast and signal 
particularly for the smallest sphere (10 mm), while bilateral and hybrid filtering exhibited superior performance 
for images with low SNR. According to table 3, the hybrid approach led to lower bias and improved CNR across the 
spheres with a maximum bias of 31% compared to 36% and 33% for Gaussian and bilateral filtering, respectively. 
In terms of CNR, all the approaches increased the CNR in proportion to the size of the spheres. However, 
maximum CNR (24.01) was obtained using the hybrid approach for the largest sphere whereas Gaussian filtering 
yielded minimum CNR (6.02) for the smallest sphere.

Moreover, table 4 reports the CNR, SNR and bias for the Jaszczak phantom study processed by the proposed 
hybrid filter and each of the spatial (NLM) and transform (curvelet) domains separately. Representative slices of 
the Jaszczak phantom acquired with different acquisition times before and after applying the curvelet, NLM and 

hybrid post-reconstruction filtering are presented in supplementary figure 5.

OSEM

Gaussian Bilateral Hybrid 

A

B C D
1

0

0.5

0.4

-0.2

0.1

Figure 2.  OSEM reconstruction of the computerized Jaszczak phantom before (A), and after denoising using Gaussian (B), bilateral 
(C) and hybrid (D) filtering along with corresponding residual images.
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Figure 3.  Comparison of horizontal profiles drawn on the six spheres of the computerized Jaszczak phantom with high noise level 
before and after applying Gaussian, bilateral and hybrid post-reconstruction filtering.

Table 1.  Contrast-to-noise ratio (CNR) measured in the different spheres of the simulated Jaszczak phantom at medium (1:5) and high 
(1:8) signal-to-background ratios. The ROIs are displayed in supplementary figure 2(A).

ROI Contrast OSEM Gaussian Bilateral Hybrid

1 Medium 6.34 5.97 6.98 13.65

High 14.46 7.76 8.89 17.89

2 Medium 4.52 8.56 10.02 15.53

High 10.70 10.89 12.64 19.01

3 Medium 5.23 11.56 15.03 22.41

High 11.93 12.11 17.36 25.03

4 Medium 8.50 13.43 16.94 23.11

High 15.33 13.56 18.63 25.89

5 Medium 7.05 12.40 17.76 23.91

High 14.19 13.60 18.93 26.19

6 Medium 9.02 13.0 18.00 24.45

High 15.65 13.87 19.61 27.45

Gaussian Bilateral Hybrid 

OSEM
A

B C D 1

0

0.5

0.4

-0.1

0.15

Figure 4.  OSEM reconstruction of the computerized thorax before (A), and after denoising using Gaussian (B), bilateral (C) and 
hybrid (D) post-reconstruction filtering along with corresponding residual images.
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3.3.  Clinical studies
Qualitatively, the clinical images were efficiently denoised whatever the method used as highlighted in the 
representative non-small lung cancer clinical study shown in figure 8. Judging based on the residual images; 
hybrid filtering effectively suppressed the noise with relatively minimal signal loss. The profile plotted on the 
lung lesion demonstrates that Gaussian filtering led to higher loss of signal and contrast compared to bilateral 
and hybrid filtering. Similar results are presented in supplementary figure 4 illustrating a patient with a small 
lesion located in soft-tissue region with lower contrast with respect to the background. The residual images and 
the plotted profile on the lesion demonstrate the superior performance of the hybrid approach. This is further 
confirmed by the average change (%) for lesions achieved by the different approaches (table 5). In the absence of 
ground truth for the clinical studies, the changes (%) were measured against the unfiltered OSEM images. The 
noise variance in the 35 background VOIs (defined for measurement of CNR and SNR using equations (8) and 
(10)) ranged from 0.002 to 0.09. In addition to previously calculating CNR at a fixed convergence level in clinical 
studies, figure 9 illustrates the trend of CNR changes with the number of iterations before (unfiltered OSEM) and 
after application of post-reconstruction filtering. Representative coronal views of a clinical study reconstructed 
at different iteration numbers along with vertical profiles through the lesion are presented in supplementary 
figure 6. The highest lesion to background ratio and CNR occurred at iteration number 4 (eight subsets). As 
the number of iterations proceeds, the CNR drops drastically primarily owing to the steep increase of noise 
levels at higher number of iterations. The hybrid approach exhibited superior performance both at low lesion to 
background ratio (early iterations) and high noise levels (late iterations).

1

2

3 12

3

Figure 5.  Comparison of vertical profiles drawn on the three lesions of the computerized thorax phantom before and after applying 
Gaussian, bilateral and hybrid post-reconstruction filtering.

Table 2.  Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantification bias measured on the three lesions of the 
computerized thorax phantom. The ROIs are displayed in supplementary figure 2(B).

Lesion OSEM Gaussian Bilateral Hybrid

L1 Bias (%) 23 36 27 24

SNR 13 39 41 63

CNR 5.69 5.08 7.42 13.04

L2 Bias (%) 18 29 25 20

SNR 4 15 13 26

CNR 4.95 7.87 9.69 14.77

L3 Bias (%) 14 24 22 17

SNR 7 16 19 29

CNR 6.07 12.35 15.98 23.19
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Figure 6.  OSEM reconstruction of the experimental Jaszczak phantom acquired with different acquisition times before and after 
applying Gaussian, bilateral and hybrid post-reconstruction filtering along with corresponding residual images. The spheres to 
background contrast is 5:1.

Figure 7.  Comparison of horizontal profiles drawn on two spheres of the experimental Jaszczak phantom for different acquisitions.
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Table 3.  Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), contrast recovery coefficient (RC) and quantification bias 
measured in the different spheres of the experimental Jaszczak phantom (the spheres to background contrast is 5:1) before and after post-
reconstruction filtering.

ROI OSEM Gaussian Bilateral Hybrid

1 Bias (%) 29 36 33 31

SNR 8 16 19 24

CNR 5.91 6.02 8.70 13.82

RC(%) 45 38 41 43

Bias (%) 27 33 31 30

2 SNR 7 16 18 27

CNR 6.23 8.12 9.98 12.93

RC(%) 55 49 51 52

Bias (%) 25 31 29 28

3 SNR 10 20 23 29

CNR 8.17 11.15 14.68 20.01

RC(%) 62 56 59 60

Bias (%) 25 29 28 27

4 SNR 12 23 28 33

CNR 9.05 13.90 17.04 22.09

RC(%) 74 69 71 72

Bias (%) 24 27 26 25

5 SNR 13 24 28 35

CNR 8.14 13.11 16.94 23.45

RC(%) 82 78 79 80

Bias (%) 22 25 24 24

6 SNR 12 25 30 38

CNR 9.12 12.73 17.89 24.01

RC(%) 84 79 81 82

Table 4.  Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantification bias measured in the different spheres of the 
experimental Jaszczak phantom (the spheres to background contrast is 5:1) before (unfiltered OSEM) and after post-reconstruction 
filtering using the hybrid and each of the hybrid filter components (NLM and curvelet) separately.

ROI OSEM Curvelet NLM Hybrid

1 Bias(%) 29.0 31.5 32.0 31.0

SNR 8 24.8 27.9 28

CNR 5.91 8.9 12.9 13.82

2 Bias(%) 27 30.7 31.4 30

SNR 7 24.9 25.7 27

CNR 6.23 9.8 12.1 12.93

3 Bias(%) 25 28.0 28.9 28.0

SNR 10 25.6 28.1 29

CNR 8.17 15.2 17.8 20.01

4 Bias(%) 25 27.1 28.2 27

SNR 12 26.3 31.3 33

CNR 9.05 17.3 21.6 23.09

5 Bias(%) 24 25.4 26.9 25

SNR 13 27.1 31.4 35

CNR 8.14 18.3 21.1 23.45

6 Bias(%) 22 23.8 25.1 24

SNR 12 27.3 31.5 38

CNR 9.12 18.1 22.1 24.01
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4.  Discussion

In the proposed hybrid approach, the NLM filter was exploited to recover the strong features while smoothing 
out the low-contrast textures. As such, the filtering parameters should be optimized to preserve edges and high-
contrast textures. Besides, a single set of NLM parameters may not be optimal to preserve both low- and high-
contrast features concurrently. Conversely, the curvelet filter was optimized to suppress noise on the residual 
images which contain mostly low-contrast textures. Therefore, understanding the frequency range that each 
of the filter components is accountable for enables concurrent optimization of parameters, thus making noise 
discrimination feasible. For each component (low- or high-contrast), the range of frequencies that the filter 
should cope with is independent of the input image. As such, the frequency range of the input image does not 
necessarily need to be known. Regardless of the frequency content of the input image, the hybrid approach 
would smooth out each of the low- and high-frequency bands (if any) properly as there is a dedicated filtering 

Figure 8.  Representative coronal views of a clinical study presenting with non-small lung cancer before (A), and after denoising 
using Gaussian (B), bilateral (C) and hybrid (D) post-reconstruction filtering along with corresponding residual images. The 
corresponding CT image (E) and vertical profiles through the lesion located on the left lung are also shown (F).

Table 5.  Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), average lesion activity concentration (standard deviation) and 
quantification bias measured on ROIs defined on lesions for the clinical studies.

OSEM Gaussian Bilateral Hybrid

CNR 11.3 12.6 17.1 21.8

SNR 14.9 36.7 41.1 51.6

Average lesion activity concentration (kBq ml−1) (SD) 13.3 (3.5) 11.4 (1.5) 12.1 (1.4) 12.9 (1.3)

Change (%) — −11.9 −6.6 −2.4
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component for each frequency band. Denoising approaches rely on multiple parameters to determine the degree 
of smoothness or preservation of the target signal where one set of parameters may not satisfy the desirable 
outcome because of the variation in signal to noise ratio within or across images (Chan et al 2009). Parameter 
optimization is considerably less challenging in this hybrid approach since different denoising algorithms and 
set of parameters are applied sequentially for high- and low-contrast patterns. This adds to the robustness of the 
hybrid approach as it is applied on different sets of PET images.

Denoising approaches implemented in the transform domain sometimes suffer from ring artefacts near steep 
edges (Mulla et al 2013). This phenomenon is due to Gibbs effect since the coefficients for the high frequency 
content of the image are eliminated during noise cancellation and image formation processes. In the hybrid 
approach, the high frequency content of the image is processed by the NLM filter and the residual image (after 
subtraction of the NLM filtered image from the noisy image) which dominantly contains low-contrast structures 
is passed through the curvelet transform. Since there are no steep edges in the residual image, the curvelet trans-
form did not generate any significant ring artefacts.

Most edge-preserving denoising approaches have a nonlinear behaviour and, as such, their performance 
depends on the lesion-to-background contrast. To evaluate the contrast dependency, three lesions with varying 
contrasts were simulated in a thorax phantom where the low contrast lesion is representative of low metabolic 
pulmonary lesions. The results reported in table 2 demonstrated that the hybrid method outperformed con-
sistently conventional Gaussian and bilateral filters in terms of SNR and signal loss regardless of the contrast. 
When a sufficient contrast is present, the NLM filter can effectively detect and preserve prominent signal in the 
spatial domain while subtle noise is removed from the other regions by means of the curvelet filter. A minimum 
bias occurred when using the hybrid approach with dramatic improvement of the SNR and CNR. Likewise, the 
residual images of the clinical study shown in figure 8 and supplementary figure 4 demonstrated signal loss when 
using Gaussian and bilateral filters while the hybrid approach suppressed the noise at the cost of minimal change 
in signal with respect to the OSEM reconstructions.

The combination of spatial and transform domain filters achieved synergy as hybrid filtering exhibited 
higher SNR and lower bias or signal loss when compared to each of NLM and curvelet filters individually (table 1 
and figure 5). The curvelet filter led to relatively low bias compared to NLM filter at the cost of poor noise removal 
as the SNR after curvelet filtering did not improve drastically.

Considering the experimental phantom, the Gaussian filter resulted in considerable signal loss when the size 
of the lesion decreases (table 3), whereas the edge preserving bilateral filter yielded lower signal loss owing to 
penalization of the smoothing factors over strong edges. In all cases, regardless of the denoising algorithm, a 
correlation was observed between the size of the target region and the resulting bias. The results suggest that the 
hybrid approach generates the highest SNR increase while minimizing signal loss. Noticeable amount of target 
signal is observed in the residual images using Gaussian and bilateral filtering regardless of the noise intensity. 
Since the hybrid approach yielded much less signal loss, in the case of high level of noise (short acquisition time), 
the target signal in the residual images was buried under the noise (figure 6). Similar phenomena were observed 
in the clinical studies where the standard deviation of lesions tracer uptake (table 5) have similar order of magni-

OSEM
Bilateral
Gaussian
Hybrid

Figure 9.  CNR values calculated for the lesion ROIs at different iteration numbers before (unfiltered OSEM) and after  
post-reconstruction filtering.
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tude while producing dramatically different changes (%). Figure 8 and supplementary figure 4 further confirm 
this issue as the residual images exhibit similar noise reduction but different signal loss with respect to OSEM 
image. In some cases, the bilateral and hybrid filtered images do not exhibit substantial difference through visual 
inspection (e.g. figure 8) where even the residual images do not depict considerable differences. However, the 
line profile along with the lower signal loss and improved CNR scores demonstrated the overall quantitative gain 
achieved by the hybrid approach. The lesions portrayed in the clinical study present with different size and con-
trast with respect to the background. As such, the results presented in table 5 may not be directly comparable to 
spheres/lesions with specific sizes in the simulation or experimental studies.

In the case of high noise level, edge-preserving methods may treat the factitious features as genuine signals 
and, as such, they cannot properly smooth out these features. This case is seen in figure 6 when using the hybrid 
approach with 10 s acquisition time: certain noise-driven patterns in the largest sphere were not eliminated after 
filtration. In this case, the Gaussian filter resulted in visually superior image quality. Although the smallest sphere 
in the 10 s image on the slice shown in figure 6 appears to be better depicted than on the corresponding 30 s image, 
this observation is not reflected in the whole 3D volume. Similar to the largest sphere, the noise in the smallest 
sphere may be considered as a true signal further boosted by the edge preserving filter.

The proposed hybrid approach provides an insight regarding the successive application of two filters combin-
ing two domains, each one responsible for recovering features of different contrast levels. The noise cancellation 
in each domain is achieved more effectively as the target frequency range in the input signal is known, thus facili-
tating the parameters optimization process. Filtering parameter optimization and fine tuning could be achieved 
more effectively when the frequency response of the filter is limited independent of the frequency content of the 
input image. These features make the hybrid approach a versatile tool for denoising of PET images with different 
tracers presenting with various spatial and temporal distributions, For instance, in dynamic or low-dose PET 
imaging (Karakatsanis et al 2016, Yan et al 2016, Rahmim et al 2018) where the low SNR induces severe bias and 
large variance in estimates of physiological parameters, image denoising capable of preserving the spatial resolu-
tion and quantitative accuracy is highly desirable. In this regard, the hybrid approach appears to be an effective 
denoising technique owing to its relatively high quantitative accuracy and improved SNR. Furthermore, dynamic 
frame-by-frame PET imaging tends to use shorter time bins to track rapid changes in the radiotracer concentra-
tion and thus be able to sample adequately the early peak of the input function (Zanotti-Fregonara 2009). As 
a result, dynamic PET images corresponding to early frames suffer from poor photon statistics and tend to be 
substantially nosier. Since there might be differences in noise levels from one frame to another in dynamic PET 
imaging (Boellaard et al 2001), a denoising approach supporting the broad range of noise levels is mandatory. In 
order to facilitate the clinical adoption of the proposed method, its clinical assessment should be performed by 
expert physicians. Moreover its robustness should be further evaluated using a different larger clinical database 
with variable characteristics (different injected doses, acquisition times, noise levels, different tracers, …etc) to 
spot any drawbacks and above all any potential artefacts that might adversely impact clinical PET. Similar to 
other edge preserving techniques, non-optimal parameter selection for the hybrid filters, artefacts might appear 
in the case of high noise levels. When the noise amplitude competes with the underlying signal, edge preserving 
filters might consider it as genuine signal and as such, the noise would remain intact in the final image.

The selection and combination of filters play a crucial role in this approach where complementary filtering 
algorithms (low/high contrast or spatial/frequency domain) can bring synergy into this approach. The combina-
tion of NLM and curvelet filters achieved promising results as post-processing tools in whole-body PET studies. 
However, in certain applications, such as denoising of natural images or structural images (CT or MRI) where 
the noise characteristics are different from typical PET images, other variants of hybrid filtering would lead to 
comparable outcome (Pierazzo and Facciolo 2017). Variants of hybrid filtering can be implemented through a 
different combination of filters in the spatial and/or frequency domains. Another potential avenue is the iterative 
implementation of the proposed approach where, at each iteration, a certain frequency range of the input image 
is processed to enhance the overall performance of the filter. Since the proposed hybrid approach is not compu-
tationally demanding (15 s for a whole-body PET image), iterative implementation of the proposed method (e.g. 
on a multi-core processor) is feasible.

5.  Conclusion

A novel denoising approach for PET images was presented, combining the advantages of spatial and frequency 
domain filtering to effectively suppress noise while minimizing signal loss and quantification bias. The proposed 
technique is based on the combination of a NLM filter (spatial domain) and the curvelet transform as a multi-
resolution technique (frequency domain) implemented in a sequential filtering scheme. Spatial domain filtering 
predominantly recovers the high contrast features whereas frequency domain filtering preserves the remaing 
low contrast textures during the denoising process. The simulated, experimental and clinical PET studies 
demonstrated that the proposed approaches outperformed conventional Gaussian and edge preserving bilateral 
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denoising techniques. The hybrid denoising approach is promising (when filtering parameters are properly 
optimized) and could replace conventional Gaussian filtering since it provides superior noise cancellation and 
signal preservation.
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