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Gleason score. The Gleason score is a grading system that 
assesses the aggressiveness of prostate cancer cells and is 
determined through a biopsy of the prostate gland [2]. The 
Gleason score ranges from 6 to 10, with higher scores indi-
cating more aggressive cancer cells and placement in the 
high-risk group. To calculate the Gleason score, the two 

1  Introduction

Prostate cancer (PCa) is the most prevalent form of can-
cer in men and is rapidly increasing worldwide [1]. Patients 
with prostate cancer are categorized into three risk groups, 
mainly low, intermediate-, and high-risk based on their 
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Abstract
Purpose  To predict Gleason Score (GS) using radiomic features from 68Ga-PSMA-PET/CT images in primary prostate 
cancer.
Methods  138 patients undergoing 68Ga-PSMA-PET/CT imaging were categorized based on GS, with GS above 4 + 3 as 
malignant and under 3 + 4 as benign tumors. radiomic features were extracted from tumors’ volume of interest in both PET 
and CT images, using Feature Elimination with cross-validation. Fusion features were generated by combining features at 
the feature level; average of features (PET/CTAveFea) or concatenated features (PET/CTConFea). The performance of various 
models was compared using area under the curve, sensitivity and specificity. Wilcoxon test and F1-score test were used to 
find the best model. Predictive models were developed for CT-only, PET-only, and PET/CT feature-level fusion models.
Results  Random Forest achieved the highest accuracy on CT with 0.74 ± 0.01 AUCMean, 0.75 ± 0.07 sensitivity, and 
0.62 ± 0.08 specificity. Logistic regression (LR) exhibited the best predictive performance on PET images with 0.74 ± 0.05 
AUCMean, 0.7 ± 0.13 sensitivity, and 0.78 ± 0.14 specificity. The best predictive PET/CTAveFea was achieved by LR, resulting 
in 0.72 ± 0.07 AUCMean, 0.74 ± 0.12 sensitivity, and 0.63 ± 0.02 specificity. In the case of PET/CTConFea, LR showed the best 
predictive performance with 0.78 ± 0.08 AUCMean, 0.81 ± 0.09 sensitivity, and 0.66 ± 0.15 specificity.
Conclusion  The results demonstrated that radiomic models derived from 68Ga-PSMA-PET/CT images could differentiate 
between benign and malignant tumors based on GS.
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most common patterns observed in the biopsy sample were 
added together. However, there is a major flaw in the Glea-
son scoring system as Gleason scores of 3 + 4 and 4 + 3 are 
often considered within the same prognostic group as Glea-
son score 7. Gleason score 7 is divided into two separate 
groups, Gleason score 3 + 4 (grade 2) and Gleason score 
4 + 3 (grade 3) [3]. Gleason score 3 + 4 tumors still have a 
favorable prognosis. Yet, it is not as good as Gleason score 
6 tumors (low-grade). On the other hand, a Gleason score 
4 + 3 tumor is more likely to grow and spread compared to 
a 3 + 4 tumor but not as likely as a Gleason score 8 tumors 
(intermediate grade). A Gleason score of 8 to 10 indicates 
high-grade or poorly differentiated cancer.

Different modern medical imaging techniques provide 
valuable clinical information for various purposes, includ-
ing clinical diagnosis, prognosis, treatment planning and 
response evaluation [4]. Gallium-68 prostate specific mem-
brane antigen (68Ga-PSMA) PET/CT as a specific imaging 
modality, has the potential to enhance lesion detectability 
and provide accurate staging in patients with PCa [5]. By 
the end of the twentieth century, the vast amount of data 
and advanced algorithms have opened a new era in medical 
imaging. Radiomics is an evolving field of research aiming 
at extracting and analyzing advanced quantitative features 
from medical images [6]. Indeed, radiomics is a reliable, 
non-invasive, and cost-effective approach that may poten-
tially predict diagnosis, monitoring treatment response, 
prognosis and personalized therapy based on the correlation 
between the extracted features and specific disease charac-
teristics or outcomes [7, 8]. Recently, much research and 
development efforts focused on demonstrating the capabil-
ity of combining radiomics and machine learning methods 
for the intriguing purposes of cancer imaging like prognosti-
cating histopathological parameters and treatment response. 
Numerous studies have assessed the potential of MRI and 
CT radiomic features as a non-invasive approach to prog-
nosticate the Gleason score of prostate cancer [8–10]. Yet, 
reports on the use of PET imaging are very sparse, with only 
a handful of studies. Aksu et al. [11], Ghezzo et al. [12] and 
Khateri et al. [13] predicted Gleason grade in patients with 
PCa using 68Ga-PSMA-PET radiomic features. Compared 
to previous studies, most of them segmented the whole 
prostate gland. In addition, it is noticeable that models com-
bining PET and CT features together were rarely explored 
before [14]. The aim of this study was to evaluate radiomic 
features derived from 68Ga-PSMA PET/CT images, as PET 
only, CT only and then as a combination of PET and CT fea-
tures to predict benign and malignant tumors with regards to 
pathological GS in patients with PCa.

2  Materials and Methods

Figure 1 illustrates the schematic workflow utilized in our 
retrospective study.

2.1  Patients

The study included 138 patients that were divided into two 
groups corresponding to low- and high-risk PCa, classified 
as malignant above 4 + 3 and benign tumors under 3 + 4 
according to the National Comprehensive Cancer Network 
(NCCN) classification (NCCN.org) [15]. Clinical infor-
mation was extracted from the hospital database. Patients 
with pathologically proven primary PCa, referred between 
December 2018 and March 2023 underwent 68Ga-PSMA-
PET/CT for initial staging of PCa prior to giving any medi-
cal treatment, surgery, radiotherapy and chemotherapy. The 
patients’ characteristics are summarized in Table 1.

2.2  Imaging Protocol

Imaging was performed on a Biograph 6 TrueV PET/
CT scanner (Siemens Healthineers, Erlangen, Germany) 
equipped with a 6-slice CT scanner 60 min post-injection 
of 68Ga-PSMA. PET/CT images from skull to mid-thigh 
were acquired for all patients. A filtered backprojection 
(FBP) algorithm was used for CT image reconstruction. 
The reconstruction matrix size of CT images was 512 × 512 
resulting in a 0.97 × 0.97 mm2 pixel size and 5  mm slice 
thickness. PET images were reconstructed using 3D-OSEM 
algorithm, 2 iterations and 21 subsets with 3 mm FWHM 
post-smoothing Gaussian filter. Resolution recovery, nor-
malization, attenuation, scatter and decay corrections were 
applied. The reconstructed matrix size was 168 × 168 result-
ing in a 4.07 × 4.07 × 2.027 mm3 voxel size.

2.3  Image Segmentation

Volumes of interest (VOIs) of prostate tumors on 68Ga-
PSMA PET/CT images were toggled using 3D-Slicer soft-
ware (version 5.2.1). Tumors in the prostate bed on PET 
and CT images were delineated and segmented manually 
using the 3D-Slicer software by an experienced nuclear 
medicine physician. Standardized uptake value (SUV) con-
version factors were computed based on body weight, lean 
body mass, body surface area, and ideal body weight on 
PET images. Using resample image module in 3D-Slicer, 
CT images were resampled to a new resolution and spac-
ing, applied a transformation (using an ITK transform) 
and wrapped. A sample of segmented prostate tumor using 
3D-Slicer is illustrated in Fig. 2.
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2.4  Image Preprocessing

Image preprocessing is an important component that aims 
to standardize and enhance image quality, minimize the 
variability and improve the accuracy of radiomics analy-
sis. Depending on the envisaged application, it is usually 
carried out in several steps. In our study, interpolation was 
utilized for resampling to avoid incomparable information 

from heterogeneous voxel spacing settings [16]. Therefore, 
1 × 1 × 1 mm3 isotropic cubic voxels in CT and 4 × 4 × 4 
mm3 in PET images were made using interpolation to iso-
tropic voxel spacing [17, 18]. Discretization was performed 
with a fixed bin width setting of 64 bins in CT and 0.1 in 
SUV PET images to decrease noise and improve image con-
trast [18, 19]. Additionally, Laplacian of Gaussian (LoG) as 
a filter was applied to all input images. This filter serves 
the purpose of detecting both edges and noise. Therefore, 
the images were smoothed using Gaussian kernels with 
sigma values of 0.5, 1, 1.5, 2 and 2.5. Eventually, three-
dimensional wavelet filter was applied to calculate features 
information in a variety of frequency of an image volume 
(x, y, z). First, the image is filtered along the x-dimension, 
resulting in a low-pass image (L) and a high-pass image (H) 
then filtered along the y-dimension, resulting in four subvol-
umes (LL, LH, HL, HH). Finally, each of these four subvol-
umes was filtered along the z-dimension, resulting in eight 

Table 1  Patient characteristics. Data reflect median or n (%). PSA: 
prostate-specific antigen; GS: Gleason score

All eligible patients (n = 138)
Age (years) 68 (48–83)
Weight (kg) 75 (104 − 48)
GS
  ≤ 3 + 4 54 (39%)
  ≥ 4 + 3 83 (61%)
PSA (ng− 1 ml) 84.69 (167.3–2.08)

Fig. 1  The framework adopted in this study protocol
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2.6  Feature Selection and Model Performance 
Evaluation

Nested cross-validation was applied with 3-fold cross-
validation for the outer and inner loops [22, 23]. The data-
set consisting of 138 patients was considered for the outer 
loop. In each fold, a set of 15 optimal features having the 
most correlation with GS and the least correlation between 
the extracted features were found by MRMR. Next, these 
selected features were fed to Recursive Feature Elimina-
tion with cross-validation (RFEcv) which operates by fit-
ting SVM inside. Five machine learning models including 
Logistic Regression (LR), K-Nearest Neighbors (KNN), 
Decision Tree (DT), Random Forest (RF) and Support 
Vector Machine (SVM) were trained to determine the best 
model and best hyperparameters in the inner loops. In 
each cross-validation outer loop, two-thirds of the patients 
(n = 92) were selected as training data, leaving the remain-
ing (n = 46) as the test data. The training data was split into 
training and validation datasets with a 2:1 patient ratio for 
training (n = 62) and validation (n = 30) in each inner fold. 
Considering the imbalanced distribution in classes, minor-
ity class oversampling was performed using the synthetic 

sub-volumes: LLH, LHL, LHH, HLL, HLH, HHL, HHH 
and LLL [18].

2.5  Radiomic Features Extraction

Radiomic features were extracted from a particular tumor 
VOI on PET and CT images following the guidelines of 
the image biomarker standardization initiative (IBSI) [20]. 
Features extraction was performed after preprocessing 
steps. In total, 1288 radiomic features were extracted from 
CT and PET images using PyRadiomics package, version 
3.0.1, in Python [21]. This version contains various fea-
tures; first-order (n = 18), shape (3D) (n = 16), Gray Level 
Co-occurrence Matrix (GLCM) (n = 24), Gray Level Run 
Length Matrix (GLRLM) (n = 16), Gray Level Size Zone 
Matrix (GLSZM) (n = 16), Neighboring Gray Tone Differ-
ence Matrix (NGTDM) (n = 5) and Gray Level Dependence 
Matrix (GLDM) (n = 14). For feature-level fusion, two dif-
ferent methods were considered. Firstly, concatenation of 
features from PET and CT images (PET/CTConFea) and in 
the second way, the extracted features from PET and CT 
were averaged (PET/CTAveFea) [14]. Figure  1 shows the 
schematics of feature extraction.

Fig. 2  Representative example of prostate tumor segmentation from a PET/CT image using 3D-slicer software
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3  Results

A total of 138 patients (one image for each) with a median 
age of 68 (range 48 to 83) were included in the study. 
Patients’ characteristics are summarized in Table 1. Out of 
138 patients, 55 (39%) had GS classes ≤ 3 + 4 (6 and 3 + 4) 
and 83 patients (61%) had GS classes ≥ 4 + 3 (4 + 3 to 10).

3.1  Hybrid Modalities Radiomics Analysis

In all models trained with an average of features derived 
from PET and CT, LR provided the highest AUCMean 
(0.72 ± 0.08), sensitivity of 0.74 ± 0.12, specificity of 
0.63 ± 0.02 and F1-score of 0.71 ± 0.09 trained by averaging 
PET and CT radiomics features. Moreover, concatenated 
radiomic features of PET and CT were selected. The mod-
els were trained and the results showed that LR achieved 
the best predictive performance in the ConFea model with 
AUCMean of 0.78 ± 0.07, sensitivity of 0.81 ± 0.09, specific-
ity of 0.66 ± 0.15, and F1-score of 0.77 ± 0.06.

3.2  Single Modality Radiomics Analysis

CT radiomic features using RF achieved the best per-
formance with AUCMean, sensitivity, specificity and 
F1-score of 0.74 ± 0.01, 0.75 ± 0.07, 0.62 ± 0.08 and 
0.72 ± 0.03, respectively. Likewise, by training mod-
els based on selected radiomic features of PET images, 
the best performance was obtained for LR classifier with 

minority oversampling technique (SMOTE) to oversample 
all training features in the less class (GS ≤ 3 + 4) up to a 1:1 
proportion with the majority class (GS ≥ 4 + 3) [24, 25]. 
Subsequently, the best model of each outer loop was deter-
mined using the area under the receiver-operating charac-
teristic (ROC) curve (AUC). Models were trained for CT, 
PET, AveFea and ConFea features. The trained models for 
GS prediction were tested in Nested cross-validation with 
the non-augmented validation data in three outer loops [23]. 
The performance of training and test set of the models is 
illustrated in Fig. 3.

2.7  Statistical Analysis

All statistical analysis was performed using scipy.stats 
library in Python [24, 26]. Wilcoxon signed-rank test was 
used to compare the AUCMean of the GS predictive classi-
fiers. Statistical analysis was performed using R statisti-
cal software (version 4.2) [27]. The AUCs of all obtained 
models from four different imaging modalities were com-
pared with each other two by two. Three modes including 
significantly lower, significantly higher and non-significant 
differences were defined based on the P-value. In addition, 
AUC-ROC was evaluated. The predicted GS was assessed 
with F1 score, sensitivity and specificity of the best predic-
tion for each outer fold using the test data [28, 29]. Finally, 
the model with the highest level of predictive performance 
was selected according to the statistical results.

Fig. 3  The performance of nested cross-validation algorithm. The three best models were achieved in each outer loop
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PET images, ConFea and AveFea and RF in CT images) are 
presented in Fig.  4. Supplementary Table  1S summarizes 
the results achieved by all trained models.

As shown in Fig.  5, five different models, namely DT, 
KNN, LR, RF and SVM, obtained from PET, CT, AveFea 
and ConFea, were compared using the Wilcoxon rank sum 
test. This figure is encoded with three colors. A significantly 
higher P-value occurs when the AUC of a particular model 
in a row is higher than the AUC of another model in a col-
umn. Conversely, a significantly lower P-value occurs when 
the AUC of a particular model in a row is lower than the 
AUC of another model in a column. Otherwise, the P-value 
is considered non-significant if the AUCs in both the row 
and column are approximately similar. The results of statisti-
cal analysis showed that PET/CTConFea-LR radiomics model 
achieved the best predictive performance with statistically 

AUCMean, sensitivity, specificity and F1-score of 0.74 ± 0.05, 
0.75 ± 0.13, 0.78 ± 0.14 and 0.70 ± 0.08, respectively.

3.3  Selected Features

The LR classifier trained with concatenated selected 
radiomic features by RFEcv achieved the best predictive 
performance. The selected features in the outer loops are 
provided in Table 2.

3.4  Statistical Analysis

The best predictive model (achieving the highest AUC score 
in the test) for each imaging modality (PET, CT and PET/
CT fusion) was adopted for comparison. The characteristics 
of the best predictive models are summarized in Table  3. 
ROC curves of the best radiomic model of all images (LR in 

Table 2  Selected features obtained from PET/CTConFea images in three outer loops
No. Loop 1 Loop 2 Loop 3
1 PET original glcm Sum Squares PET wavelet LLH gldm Low Gray Level Emphasis PET wavelet HHL glszm Large 

Area Emphasis
2 PET log sigma 2 mm 3D ngtdm 

Coarseness
PET log sigma 2.5 mm 3D gldm Small Dependence 
Emphasis

PET wavelet HHH first-order 
Skewness

3 PET wavelet LLH gldm Large Depen-
dence Low Gray Level Emphasis

PET wavelet HHL firstorder Mean PET wavelet HLL first-order 
Median

4 PET log sigma 2.5 mm 3D glszm Size 
Zone Non-Uniformity Normalized

PET wavelet LLH glrlm Low Gray Level Run Emphasis PET log sigma 0.5 mm 3D glszm 
Small Area Emphasis

5 CT wavelet HHH glrlm Gray Level 
Variance

PET log sigma 2.5 mm 3D gldm Dependence Non-
Uniformity Normalized

PET wavelet HHL gldm Depen-
dence Non-Uniformity Normalized

6 CT wavelet LHL gldm Large Depen-
dence Emphasis

PET wavelet LLL glszm Small Area Low Gray Level 
Emphasis

PET wavelet HHL glcm Idmn

7 CT wavelet HHL glszm High Gray 
Level Zone Emphasis

PET wavelet HHL glcm Correlation CT wavelet LHH first-order Mean 
Absolute Deviation

8 CT wavelet LHH glrlm Short Run Low 
Gray Level Emphasis

PET wavelet LHH glszm Size Zone Non-Uniformity 
Normalized

CT wavelet LHH glcm Joint 
Energy

9 CT wavelet HLH firstorder Skewness PET wavelet LLL glrlm Low Gray Level Run Emphasis CT wavelet HHH glszm Low Gray 
Level Zone Emphasis

10 CT wavelet HLH gldm Large Depen-
dence High Gray Level Emphasis

CT wavelet HHH glszm Small Area High Gray Level 
Emphasis

CT wavelet LHH glszm High Gray 
Level Zone Emphasis

11 CT original glszm Zone% CT wavelet HHL glrlm Low Gray Level Run Emphasis CT wavelet HLH glcm Imc2
12 CT wavelet LHH glszm High Gray Level Zone 

Emphasis
CT wavelet HHH glszm Small 
Area High Gray Level Emphasis

13 CT wavelet HHL glszm Low Gray Level Zone Emphasis CT wavelet LHL first-order 
Variance

Table 3  Performance of the trained classifiers on the test data sets models for each modality, in terms of Mean AUC, Mean sensitivity, Mean 
specificity and Mean F1 score
Modality classifier Mean AUC Mean sensitivity Mean specificity Mean 

F1 score
CT Random Forest 0.74 ± 0.01 0.75 ± 0.07 0.62 ± 0.08 0.72 ± 0.03
PET Logistic Regression 0.74 ± 0.05 0.75 ± 0.13 0.78 ± 0.14 0.7 ± 0.08
AveFea
(PET/CT)

Logistic Regression 0.72 ± 0.08 0.74 ± 012 0.63 ± 0.02 0.71 ± 0.09

ConFea
(PET/CT)

Logistic Regression 0.78 ± 0.07 0.81 ± 0.09 0.66 ± 0.15 0.77 ± 0.09
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predicting histopathological parameters and treatment 
response [8, 26, 30]. Several studies have evaluated the 
use of MRI radiomic features as a non-invasive approach 
to predict the Gleason score [2, 8, 24, 31, 32]. Abdollahi et 
al. introduced several radiomic models extracted from MRI 
to predict IMRT response [8]. They also demonstrated that 
using radiomic features was effective to predict GS ≥ 7 in 
patients with PCa. Two related studies using PET/CT imag-
ing are worth mentioning. Ghezzo et al. analyzed the role of 

significant difference (P-value < 0.05). In addition, the fif-
teen different models were compared.

4  Discussion

Recent literature has demonstrated the potential of combin-
ing radiomics and machine learning techniques for a num-
ber of applications in prostate cancer imaging, including 

Fig. 4  ROC curve and Mean AUC of the best predictive models LR and RF for all 3 outer loops in (A) PET-only (LR), (B) CT-only (RF), (C) 
AveFea (LR) and (D) ConFea (LR)
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was applied on the selected feature by MRMR method to 
find the best combination of features. RFEcv operates by 
fitting an SVM model to all the features, and the SVM tak-
ing off the feature that is considered less relevant to leave 
only the highest ranked and less interdependent features. 
For comparison with other studies, Solari et al. used RFE 
method for the selection of the radiomic features [24] 
whereas Osman et al. applied the function ‘find correlation’ 
in the R package Caret to select the features [33]. Among 
the features selected in three loops, less than 20% of them 
have been influenced by the Gaussian filter and the wave-
let filter was affected on a significant percentage of features 
(the first loop 70%, the second loop 84% and the third loop 
more than 90%). As opposed to other methods, the wavelet 
filter does not consider that the coefficients are independent, 
and the computation time is modest. Hence, the wavelet fil-
ter could give striking results compared to other filters [34].

68Ga-PSMA-PET radiomics for the prediction of the Inter-
national Society of Urological Pathology (ISUP) grade [12] 
whereas Aksu et al. evaluated the performance of models 
based on PET radiomic features to predict Gleason Grade 
[11].

Tumor segmentation as a noticeable step in radiomics 
studies might impact the results. Solari et al. [24], Ghezzo 
et al. [12] and Aksu et al. [11] segmented the whole pros-
tate gland to extract radiomic features, while the malignant 
part of the prostate or only lesions in the bed of the prostate 
was segmented in our study. Indeed, selecting normal tissue 
could impact the correlation between the extracted radiomic 
features and GS.

In the present study, nested cross-validation algorithm 
was utilized to train five classifier models by handcrafted 
radiomic features extracted from 68Ga-PSMA-PET/CT 
images to predict biopsy Gleason Grade. In this study, we 
used MRMR to select the most effective features. RFEcv 

Fig. 5  The models on columns and rows were evaluated against each 
other. Light blue: if the row model outperformed non-significantly the 
column model in terms of P-value. Purple: in case the row model out-

performed significantly higher the column model in terms of P-value. 
Green: when the row model outperformed significantly lower the col-
umn model in terms of P-value
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value. In addition, utilizing cross-validation decreases over-
fitting. Aksu et al. did not employ cross-validation in their 
study, potentially leading to overtraining, whereas our study 
used nested cross-validation to mitigate overfitting [37].

Ghezzo et al. aimed to predict GS > 8 and GS < 8 in 47 
PCa patients who underwent 68Ga- PSMA PET from two 
different scanners before radical prostatectomy, where the 
SVM model achieved a bAcc of 87% using radiomic fea-
tures extracted from 68Ga-PSMA PET images [12]. Our 
results demonstrated that the LR model trained with PET/
CTConFea data was able to predict GS with the highest per-
formance, achieving an AUCMean of 0.78 ± 0.07 in PCa 
patients. In addition, the assessment of single modality 
images showed that logistic regression built based on PET 
and CT features achieved the best predictive performance 
with AUCMean of 0.74. The reason why the AUC was less in 
the present study compared to the above-mentioned studies 
could be attributed to the following reasons. Ghezzo’s et al. 
performed a multicentric study that used ComBat harmo-
nization method. Applying ComBat removes all radiomic 
features with significantly different distributions. Hence, on 
the whole, the predictive ability of radiomics models was 
improved through harmonization by ComBat [12]. There-
fore, the AUC obtained from Ghezzo’s study was higher 
than the AUC achieved in the present study.

Despite these bright results, the lack of interpretabil-
ity and standardization in the field of radiomics remains 
a concern hindering the adoption of radiomics analysis in 
clinical setting. The approach requires multi-institutional 
external validation on a larger scale before wider clinical 
implementation. We considered 46 images to evaluate our 
model’s performance. For this reason, the methodology 
of the present study was developed to ensure realistic and 
explainable results, building on previously acquired knowl-
edge. The performance of deep learning is generally better 
than machine learning, at the expense of the requirement of 
huge data. Therefore, it is suggested that future studies use 
multicenter data for deep learning analysis.

5  Conclusion

The findings of our study demonstrated that utilizing 
radiomic features extracted from 68Ga-PET/CT images 
could potentially be an effective non-invasive approach to 
predict pathological indices, such as GS in primary PCa 
patients.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s40846-
024-00906-3.

Author Contributions  Farshad Emami, Habibeh Vosoughi and Parham 

The repetitive feature included in all outer loops in the 
models obtained was GLSZM-HGLZE, which defines the 
measurement of the distribution of the high gray-level val-
ues, with a high value indicating a greater proportion of 
higher gray-level values in the image. GLRLM-LGLRE 
were repeated in different frequencies three times in the sec-
ond loop which measures the distribution of low gray-level 
values. These findings support the claim that machine learn-
ing models trained with a feature of non-uniformity (i.e. 
GLSZM, GLRLM) might be sufficient to accurately char-
acterize PCa in the staging phase. Solari et al. showed that 
GLSZM strongly correlates with GLDM, GLCM, NGTDM, 
SUVmean, 90th Percentile, and GLDM [24]. Aksu et al. 
reported that both GLRLM-RLNU and Shape_compacity 
features were higher, indicating greater heterogeneity of 
high-grade tumors, in which Shape_compacity shows how 
compact the area of interest and GLRLM-RLNU indicated 
more homogeneity among run lengths in the image [11].

In contrast to previous studies that focused only on 
one imaging modality, we used CT-only, PET-only, PET/
CTAveFea and PET/CTConFea models. For instance, Chaddad 
et al. used mpMRI-based radiomics model to predict GS [2], 
whereas Cuocolo investigated the correlation between fea-
tures derived from MRI and GS above (4 + 3) [31]. Osman 
et al. investigated the role of CT-based radiomic features in 
risk group classification of PCa patients [33].

Solari et al. evaluated Gleason categories using radiomic 
features of PET/MR images by training only SVM as a 
multi-class model. They reported balanced accuracy (bAcc) 
of single and hybrid imaging modalities and concluded that 
the combination of PET + Apparent Diffusion Coefficient 
(ADC) was the best classifier model with bAcc of 0.81 [24]. 
In our study, the highest performance achieved by the hybrid 
modality, PET/CTConFea, was 0.78. The reason for the differ-
ence between the two studies can be explained by the higher 
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