
R E S E A R CH AR T I C L E

COLI-Net: Deep learning-assisted fully automated COVID-19
lung and infection pneumonia lesion detection and
segmentation from chest computed tomography images

Isaac Shiri1 | Hossein Arabi1 | Yazdan Salimi1 | Amirhossein Sanaat1 |

Azadeh Akhavanallaf1 | Ghasem Hajianfar2 | Dariush Askari3 |

Shakiba Moradi4 | Zahra Mansouri1 | Masoumeh Pakbin5 |

Saleh Sandoughdaran6 | Hamid Abdollahi7 | Amir Reza Radmard8 |

Kiara Rezaei-Kalantari2 | Mostafa Ghelich Oghli4,9 | Habib Zaidi1,10,11,12

1Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
2Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
3Department of Radiology Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
5Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
6Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7Department of Radiologic Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
8Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
9Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
10Geneva University Neurocenter, Geneva University, Geneva, Switzerland
11Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
12Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark

Correspondence
Habib Zaidi, Division of Nuclear Medicine
and Molecular Imaging, Geneva
University Hospital, CH-1211 Geneva,
Switzerland.
Email: habib.zaidi@hcuge.ch

Funding information
Swiss National Science Foundation,
Grant/Award Number: SNRF
320030_176052; WOA Institution:
Universite de Geneve; Blended DEAL:
CSAL

Abstract

We present a deep learning (DL)-based automated whole lung and COVID-19

pneumonia infectious lesions (COLI-Net) detection and segmentation from

chest computed tomography (CT) images. This multicenter/multiscanner study

involved 2368 (3470259 2D slices) and 190 (17 341 2D slices) volumetric CT

exams along with their corresponding manual segmentation of lungs and

lesions, respectively. All images were cropped, resized, and the intensity values

clipped and normalized. A residual network with non-square Dice loss func-

tion built upon TensorFlow was employed. The accuracy of lung and COVID-

19 lesions segmentation was evaluated on an external reverse transcription-

polymerase chain reaction positive COVID-19 dataset (70333 2D slices) col-

lected at five different centers. To evaluate the segmentation performance, we
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calculated different quantitative metrics, including radiomic features. The

mean Dice coefficients were 0.98 ± 0.011 (95% CI, 0.98–0.99) and 0.91 ± 0.038

(95% CI, 0.90–0.91) for lung and lesions segmentation, respectively. The mean

relative Hounsfield unit differences were 0.03 ± 0.84% (95% CI, �0.12 to 0.18)

and �0.18 ± 3.4% (95% CI, �0.8 to 0.44) for the lung and lesions, respectively.

The relative volume difference for lung and lesions were 0.38 ± 1.2% (95% CI,

0.16–0.59) and 0.81 ± 6.6% (95% CI, �0.39 to 2), respectively. Most radiomic

features had a mean relative error less than 5% with the highest mean relative

error achieved for the lung for the range first-order feature (�6.95%) and least

axis length shape feature (8.68%) for lesions. We developed an automated DL-

guided three-dimensional whole lung and infected regions segmentation in

COVID-19 patients to provide fast, consistent, robust, and human error

immune framework for lung and pneumonia lesion detection and

quantification.
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1 | INTRODUCTION

The recent pandemic of severe acute respiratory syn-
drome coronavirus 2 disease (COVID-19) is posing great
health concerns globally.1,2 The COVID-19 pandemic has
resulted in loss of lives, health, and economic issues.3

Although a large number of trials have been conducted
to produce vaccines and/or treat COVID-19, a specific
vaccine or therapy is still lacking.4,5 For the diagnosis of
COVID-19, reverse transcription-polymerase chain reac-
tion (RT-PCR) is a high sensitive molecular test, but
bears inherently a number of limitations.6,7 Furthermore,
previous studies have indicated that thoracic computed
tomography (CT) is a fast and highly sensitive approach
for COVID-19 detection and management.8,9 In this
regard, dedicated ultralow-dose CT scanning protocols
were recently devised.10

In connection with the use of CT in COVID-19 manage-
ment, a wide range of qualitative and quantitative studies
have been carried out for diagnostic, prognostic and longi-
tudinal follow-up of patients.11–13 In these studies, whole
lungs or infectious lesions were analyzed and several pat-
terns and features were found to have high diagnostic and
prognostic value.13–18 However, accurate segmentation of
lungs and infectious pneumonia lesions remains challeng-
ing.19 Hence, segmentation is the main issue impacting the
outcome of both qualitative and quantitative studies.12,19,20

Although several segmentation approaches including man-
ual delineation, semiautomated21 and fully automated20

techniques have been applied to CT images for COVID-19

management, they are still facing serious challenges to pro-
duce robust and dependable outcomes.

In medical image segmentation, particularly whole
three-dimensional (3D) volumes definition and big data
analysis, manual delineation requires experienced
trained radiologists, is time consuming, labor-intensive,
and suffers from interobserver and intraobserver variabil-
ity concerns.22,23 Whole lung segmentation is a pivotal
step for further analysis, including extraction of the per-
centage of infection, well aerated portion of the lung, and
enabling radiomics and deep learning (DL) analysis of
COVID-19 patients.14,17 Conventional algorithms, includ-
ing rule-based and atlas-based, performed relatively well
on normal and mild disease chest CT, but might fail in
COVID-19 patients lung segmentation because of differ-
ent stages of disease with different levels of severity.19

Furthermore, developing a fully automatic tool for lung
and pneumonia COVID-19 lesions is highly desired
owing to rapid changes in appearance and manifestation
at different stages of the disease.13,19

Artificial intelligence (AI) algorithms, particularly its
two major subcategories, machine learning (ML), and DL,
have been widely used for medical image analysis24–31

and more recently in the segmentation of lung and pneu-
monia infectious lesions from chest CT images of COVID-
19 patients.15 These studies reported that AI improved the
accuracy of lesion detection/segmentation and reduced
the bias associated with conventional approaches. In a
study by Zheng and coworkers,32 a weakly supervised DL
algorithm was applied to chest CT images for automatic
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COVID-19 detection. Fan et al.33 presented a COVID-19
lung infection segmentation deep network (Inf-Net)
based on semisupervised learning. Furthermore, a num-
ber of DL algorithms, namely UNet, UNet++, V-Net,
Attention-UNet, Gated-UNet, and Dense-UNet were used
for COVID-19 lesion detection and segmentation from
chest CT images.34,35

CT images are commonly acquired on various scan-
ner models using different imaging protocols, and as
such, the resulting datasets are heterogeneous, which
might lead to inaccuracy in the developed models. Train-
ing a robust and generalizable DL model requires a large
clean annotated dataset.36 Owing to the relatively recent
outbreak of COVID-19 pandemic, producing a large
labeled COVID-19 image dataset is impractical. Transfer
learning (TL) has received attention to address the lack
of large datasets for the implementation of machine/DL-
based algorithms.37,38 Various TL-based strategies were
used for transferring knowledge from different domains,
including natural images to medical images to develop
more robust and generalizable models.38

In the present study, we developed a DL-based auto-
mated detection and segmentation of lung and COVID-19
pneumonia infectious lesions (COLI-Net) from chest CT
images. In this work, large lung and COVID-19 lesions
datasets and TL used to train a residual network (ResNet)
for lung and pneumonia infectious lesions segmentation.

2 | MATERIALS AND METHODS

2.1 | Clinical studies

For lung and COVID-19 lesions segmentation, we pre-
pared 2368 (347 259, 2D slices) and 190 (17 341, 2D
slices) multicentric and multivendor volumetric CT
images with lung and COVID-19 lesion segmentations.

2.2 | Lung datasets

For lung segmentation training, we used 2298 chest CT
exams (3280205, 2D slices) with different pathologies
from different centers, including 800 exams of normal
subjects without any lung abnormalities from Iran Cen-
ter#1 (810347, 2D slices); 400 images of non-small cell
lung carcinoma patients from Cancer Imaging Archive
(TCIA)39–41 (480568, 2D slices); 200 non-COVID-19 pneu-
monia (490465, 2D slices); and 898 (1480825, 2D slices)
RT-PCR positive COVID-19 patients from Iran Center#2.
All lung segmentations were performed using a region-
growing algorithm followed by manual verification and
amendment by an experienced radiologist.

2.3 | COVID-19 lesions datasets

For COVID-19 lesions segmentation training, we used
120 (9557, 2D slices) RT-PCR positive image datasets,
including 90 (8338, 2D slices) datasets from three differ-
ent centers in Iran (Centers#1, #2, #3) where the infec-
tious lesions were manually segmented by experienced
radiologists, in addition to 30 (1250, 2D slices) CT exams
from Russia.42 Lesions were segmented manually for the
local dataset whereas these segmentations were provided
by data providers for the external dataset.42–44

2.4 | Image preprocessing

Prior to network training, all images were cropped with-
out losing important information (parts of lungs) and
resized to 296 � 216 matrix size. In the first step of inten-
sity normalization, voxel intensities in the entire dataset
were clipped between �1024 and 300 HUs to reduce the
dynamic range of the intensity of CT images. This range
of HUs covers air, lung tissue, fat, soft-tissue, and calcifi-
cations in the lung. Only bony structures will be
suppressed, which are irrelevant to lung and lesion seg-
mentations. Hence, we found this range of HUs optimal
for ML-based lung and lesion segmentation. Moreover, to
further reduce the dynamic range of voxel intensities, CT
images were normalized with an empiric factor equal to
1000 to keep the original dynamic intensity range and
put the bulk of CT intensity within the range of 0–1 HU.

2.5 | Residual neural network

The ResNet proposed by Li et al.45,46 built upon Ten-
sorFlow was used for lung and COVID-19 lesions seg-
mentation. The ResNet is composed of 20 convolutional
layers where different dilation factors were used for dif-
ferent levels of feature extraction (zero dilatation factor
for low-level, two dilatation factors for medium-level,
and four dilatation factors for high level). Every two
layers were linked together with residual connections
(Figure 1). Non-square Dice was used as loss function,
and Figure 1 provides descriptive detail of ResNet.

2.6 | Training and evaluation

Lung and COVID-19 lesions training was performed on
2D slices owing to the wide variability in slice thicknesses
across the datasets from the different centers. We used
the following hyperparameters for model training: loss
function = non-square Dice, learning rate = 0.001,
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optimizer = Adam, decay = 0.0001, batch size = 32, and
weights regression type = L2norm, drop out = 0.5, and
number of epochs = 300. For lung segmentation training,
we used 2178 3D CT images (347 259, 2D slices). For
COVID-19 lesions segmentation, we used pretrained lung
segmentation network as initial weights followed by fine-
tuning for lesion segmentation of 120 3D CT images
(9557, 2D slices). Body fine-tuning approaches were used
for TL where all pretrained weights of lung segmentation
were used as initial weights for lesion segmentation. The
quantitative assessment of segmentations was performed
independently on RT-PCR positive COVID-19 datasets
from different centers, including 20 CT exams (2214, 2D
slices) from Center#1 (Iran1); 10 exams (2552, 2D slices)
from Center#2 (Iran2); 20 exams (1250, 2D slices) from
center#3 (Russia)42; 10 exams (939, 2D slices) from Cen-
ter#4 (China)43,44; and 10 exams (829, 2D slices) from
center#5 (Italy*).44 Training datasets were split into train-
ing (80%) and validation (20%) sets. Overall, the evalua-
tion was performed on 7333 2D slices from different
centers. Data splitting into training and test sets was per-
formed based on 3D image of patients without overlap
between the training and test sets. All evaluations were
performed in 3D mode.

2.7 | Evaluation

To evaluate the performance of image segmentation, we
calculated Dice similarity coefficient (Equation (1)), Jaccard
index (Equation (2)), false negative (Equation (3)), false pos-
itive (Equation (4)), mean surface distance (Equation (5)),
and mean Hausdorff distance (Equation (6)). In addition,

different volume indices were exploited to quantify the por-
tion of infection, including relative volume difference (%),
relative volume difference of lesion/lung relative volume
(%) (Equation (7)), absolute relative volume difference (%)
(Equation (8)), and absolute relative volume difference of
lesion/lung relative volume (%). Hounsfield unit (mean) rel-
ative difference (%), and Hounsfield unit (mean) absolute
relative difference (%) were calculated for lungs and
COVID-19 lesions from different segmentations of CT
images. In addition, we evaluated the impact of the segmen-
tation on 17 first-order and 10 shape radiomic features in
both lungs and COVID-19 lesions. The list of radiomic fea-
tures is presented in Supplemental Table 1.

DSC¼ 2�TP
TPþFPð Þþ TPþFNð Þ ð1Þ

JI¼ TP
TPþFPþFN

ð2Þ

FNR¼ FN
FNþTP

ð3Þ

FPR¼ FP
TNþFP

ð4Þ

MSD¼ 1
jP j

ð ð∞
p � P

d p,Gð ÞdP ð5Þ

where d p,Gð Þ is the distance between a point p belonging
to the surface of a 3D surface predicted image (P) and its
closest distance between the two surfaces P and
G (ground truth).

FIGURE 1 Architecture of

the deep residual neural

network (ResNet) along with

details of the associated layers.

Conv, convolutional kernel;

LReLu, leaky rectified linear

unit; SoftMax, Softmax function;

Residual, residual connection
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MHD P,Gð Þ¼ 1
P
max
p¼P

fmin
g¼G

d p,gð Þggf ð6Þ

RD¼P�G
G

�100% ð7Þ

AD¼ P�G
G

����
�����100% ð8Þ

3 | RESULTS

Figures 2 and 3 compares visually in 2D and 3D views for
different external validation sets of lungs and lesions delin-
eated manually by experienced radiologists and automati-
cally by the DL model. Additional results from the
external validation sets are provided in Supplemental
Figures 1–13 (2D views) and 14–17 (3D views). Overall,
there is good agreement between manual and predicted
lung and infectious lesions segmentation in the different
datasets. Despite the variability of the subjects among the

different centers, COLI-Net performed consistently well in
multicentric and multiscanner setting. What stands out
from these results is that COLI-Net can detect and seg-
ment infectious regions (within lesion segmentation) while
excluding arteries and tracheae in lung segmentation.

Table 1 summarizes segmentation quantification met-
rics for lungs and COVID-19 lesions. It can be seen that
the mean Dice coefficients were 0.98 ± 0.011 (95% CI,
0.98–0.99) and 0.91 ± 0.038 (95% CI, 0.90–0.91) for lung
and lesions segmentation, respectively. The mean Jaccard
index was 0.97 ± 0.022 (95% CI, 0.97–0.97) and 0.83
± 0.062 (95% CI, 0.82–0.84) for lung and COVID-19
lesions segmentation, respectively. Lung segmentation in
Russia datasets exhibited better results compared to the
other centers/datasets. This might be attributed to the
homogeneity and mild severity of the lesions in this
dataset. Supplemental Tables 2–7 summarize lung and
lesion segmentation quantification metrics for different
external validation sets.

Table 2 summarizes the impact of lung and lesions
segmentations on mean Hounsfield unit and volume

FIGURE 2 Representative manual and predicted segmentation (2D views) of lungs and COVID-19 lesions for five different cases from

different datasets
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FIGURE 3 Representative manual and predicted segmentation (3D views) of lungs and COVID-19 lesions for three different cases from

different datasets

TABLE 1 Descriptive statistics of

quantitative metrics for lung and

COVID-19 lesions in the different

datasets

Metric Min Max Mean ± SD 95% CI

Lung Dice 0.92 0.99 0.98 ± 0.011 0.98–0.99

Jaccard 0.86 0.99 0.97 ± 0.022 0.97–0.97

False negative 0.003 0.086 0.013 ± 0.011 0.011–0.015

False positive 0.002 0.073 0.017 ± 0.014 0.014–0.019

Average Hausdorff distance 0.005 0.14 0.022 ± 0.026 0.018–0.027

Mean surface distance 0.005 0.17 0.026 ± 0.028 0.021–0.031

Lesions Dice 0.8 0.98 0.91 ± 0.038 0.9–0.91

Jaccard 0.66 0.96 0.83 ± 0.062 0.82–0.84

False negative 0.015 0.23 0.086 ± 0.044 0.078–0.094

False positive 0.024 0.32 0.098 ± 0.055 0.088–0.11

Average Hausdorff distance 0.043 5.6 0.42 ± 0.73 0.29–0.55

Mean surface distance 0.046 6.1 0.45 ± 0.79 0.31–0.59

6 SHIRI ET AL.



calculation. Mean relative HU differences (%) of 0.03
± 0.84 (95% CI, �0.12 to 0.18) and �0.18 ± 3.4 (95% CI,
�0.8 to 0.44) were achieved for lungs and lesions, respec-
tively. The relative volume difference for the lung was
0.38 ± 1.2 (95% CI, 0.16–0.59) whereas it was 0.81 ± 6.6
(95% CI, �0.39 to 2) for lesions. The results obtained
from the mean Hounsfield unit and volume calculation
for lung and infectious lesions for the different external

validation sets are presented in Supplemental
Tables 8–11.

Figures 4 and 5 depict the Dice similarity index,
Jaccard, mean Hounsfield unit, and volume difference
box plots for lung and lesions segmentation, respectively.
Supplemental Figures 18 and 19 show box plots of
Hounsfield unit absolute relative difference (%), absolute
relative volume difference (%), false negative, false

TABLE 2 Descriptive statistics of volume index for lung and COVID-19 lesions in the different datasets

Metric Min Max Mean ± SD 95% CI

Lung Relative mean HU diff (%) �4.2 3.9 0.03 ± 0.84 �0.12 to 0.18

Absolute relative mean HU diff (%) 0.006 4.2 0.52 ± 0.66 0.4–0.64

Relative volume diff (%) �3.1 6.4 0.38 ± 1.2 0.16–0.59

Absolute relative volume diff (%) 0.004 6.4 0.89 ± 0.88 0.73–1

Lesions Relative mean HU diff (%) �9.8 10 �0.18 ± 3.4 �0.8 - 0.44

Absolute relative mean HU diff (%) 0.026 10 2.4 ± 2.5 1.9–2.8

Relative volume diff (%) �14 21 0.81 ± 6.6 �0.39 to 2

Absolute relative volume diff (%) 0.018 21 4.8 ± 4.6 4–5.6

FIGURE 4 Box plots comparing various quantitative imaging metrics for lung segmentation, including Dice coefficient, Jaccard index,

Hounsfield units (mean) relative difference (%), and relative volume difference (%)
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positive, average Hausdorff distance, and mean surface
distance for lung and lesions.

Descriptive statistics of relative volume (lesion/lung)
indices are presented in Table 3. A relative error of 0.22
± 6.3 (95% CI, �0.95 to 1.4) and absolute relative error of
4.7 ± 4.2 (95% CI, 3.9–5.5) were achieved for relative vol-
ume (lesion/lung). Supplemental Tables 12 and 13 sum-
marize the results obtained for the relative volume
(lesion/lung) index for different external validation sets.
Figure 6 depicts boxplot of manual and predicted relative
volume lesion/lung differences (%) and absolute/relative
error of lesion/lung relative volume errors (%) for differ-
ent external validation sets.

Figure 7 presents heatmap of the mean relative error
of first-order and histogram shape radiomic features in
the lung and lesions for different validation sets. Most
radiomic features exhibited a mean relative error less
than 5% with the highest mean relative error for the lung
being �6.95% for range first-order feature and least axis
length shape feature (8.68%) in lesions. The heatmap of
the mean absolute relative error is depicted in Supple-
mental Figure 20.

4 | DISCUSSION

Chest CT imaging has emerged as a complementary tool
for COVID-19 early diagnosis and longitudinal follow-up.8

However, a number of challenges still need to be addressed
for the accurate diagnosis of COVID-19 and its differentia-
tion from other lung diseases, such as viral and bacterial
pneumonia and other respiratory diseases.17 In this regard,
several AI-based solutions exhibiting different levels of
accuracy and robustness were proposed and evaluated.14,17

Another challenging problem that arises in the
domain of quantitative analysis of CT images in clinical
practice is lung and pneumonia infectious lesions seg-
mentation.19 At the outset, different complex manifesta-
tions (appearance, size, location, boundaries and
contrast) of infectious lesions, including consolidation,
reticulation, and ground-glass opacity at different stages
of the disease (longitudinal changes in the same patients)
have been observed.13 Furthermore, providing ground
truth segmentation for infectious lesion segmentation is
challenging owing to interobserver/intraobserver vari-
ability, noisy annotations, and the long processing time.19

FIGURE 5 Box plots comparing various quantitative imaging metrics for COVID-19 lesions segmentation, including Dice coefficient,

Jaccard index, Hounsfield units (mean) relative difference (%), and relative volume difference (%)
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Previously developed atlas,47 rule,48 and hybrid (atlas
and rule)49 based algorithms for lung segmentation have
shown acceptable performance on normal lungs and in
the presence of mild pathogens (low density), such as
emphysema.50 However, they presented limited perfor-
mance in severe conditions (high density), including
pleural effusion, atelectasis, consolidation, fibrosis, and
pneumonia.51 Recent developments in the field of ML
have led to a renewed interest in automatic lung segmen-
tation. However, most seminal works in this area used a
limited training dataset, predominantly containing nor-
mal cases or focusing on one class of pathogeneses,
which could impact generalizability for unseen/non-
diagnosed test datasets.52 In the present study, we applied

DL algorithms and TL on CT images obtained from dif-
ferent imaging centers to detect and segment the whole
lung and pneumonia infected regions in COVID-19
patients.

A number of previous works attempted to develop
automated segmentation algorithms for lung and infec-
tious lesions in COVID-19 CT images. Hofmanninger
et al.51 developed models for lung segmentation and
reported a Dice coefficient of 0.98 ± 0.01 for different
pathological states (atelectasis, fibrosis, mass, pneumo-
thorax, and trauma). They concluded that diversity in the
training dataset is more important than the DL algo-
rithms. Müller et al.53 implemented a 3D U-Net using
data augmentation for generating image patches during

TABLE 3 Descriptive statistics of relative volume index

Metric Min Max Mean ± SD 95% CI

Manual segmentation relative volume (lesion/lung) 0.001 0.82 0.13 ± 0.19 0.095–0.16

Predicted segmentation relative volume (lesion/lung) 0.001 0.84 0.13 ± 0.19 0.094–0.16

RE volume diff lesion/lesion (%) �14 16 0.22 ± 6.3 �0.95 to 1.4

ARE volume diff lesion/lesion (%) 0.004 16 4.7 ± 4.2 3.9–5.5

FIGURE 6 Box plots comparing various quantitative imaging metrics for relative volume, including manual segmentation relative

volume lesion/lung, predicted segmentation relative volume lesion/lung, relative error of lesion/lung relative volume (%), and absolute

relative error of lesion/lung relative volume (%)

SHIRI ET AL. 9



training for lung and lesion segmentation on 20 annotated
CT volumes. They achieved Dice coefficients of 0.950 and
0.761 for lung and lesions, respectively. A modified 3D U-
Net (feature variation and progressive atrous spatial pyra-
mid pooling blocks) proposed by Yan et al.34 was devel-
oped for lung and infectious lesion segmentation on
861 patients, reporting a Dice similarity index of 0.987 for
lung and 0.726 for lesions segmentation. Moreover, com-
parisons were performed with a dense fully convolutional
network (lung: 0.865, lesions: 0.659)54; U-Net (lung:
0.987, lesions: 0.688)55; V-Net (lung: 0.983, lesions:

0.625)56; and U-Net++ (lung: 0.986, lesions: 0.681).57 The
mean Dice coefficient for lung and lesions segmentation
for different external validation sets used in our work
were 0.98 ± 0.011 and 0.91 ± 0.038, respectively.

Chen et al.58 used the residual attention U-Net for
multi-class segmentation of CT images, achieving a Dice
coefficient of 0.94 for infectious lesions segmentation.
Zhou et al.35 used a modified U-net network through spa-
tial and channel attention mechanisms along with focal
Tversky loss in the training process for improving small
lesions segmentation. The results were evaluated on

FIGURE 7 Mean relative error of different first-order and shape radiomic features for different datasets in lung and infection regions

10 SHIRI ET AL.



427 slices achieving a Dice coefficient of 0.83. Elharrouss
et al.59 adopted an encoder-decoder for infectious lesions
segmentation using 20 clinical studies from the Italian
Society of Medical and Interventional Radiology to report
a Dice coefficient of 0.786. They compared the results
with U-Net (Dice: 0.439),60 Attention-UNet (Dice:
0.583),61 Gated-UNet (Dice: 0.623),62 Dense-UNet (Dice:
0.515),63 U-Net++ (Dice: 0.422),57 and Inf-Net (Dice:
0.739).33 Wang et al.64 proposed a robust algorithm for
COVID-19 infectious lesions segmentation from CT
images (COPLE-Net) designed to learn from noisy
labeled data. The algorithm relies on noise-robust Dice
loss and mean absolute error loss for generalized Dice
loss for robust segmentation of noisy datasets and a mod-
ified version of U-Net to better handle infectious lesion
segmentation with various manifestations and scales.
The best results achieved by COPLE-Net were 0.807
± 0.099 and 0.160 ± 0.171% as Dice coefficient and rela-
tive volume error (RVE [in %]) respectively. Wang et al.64

evaluated different DL algorithms, including modified 3D
U-Net (3D New-Net U-Net, Dice: 0.704 ± 0.187, RVE:
25.41 ± 24.73%),65 modified 2D U-Net (2D New-Net U-
Net, Dice: 0.791 ± 0.129, RVE: 18.37 ± 17.43%),65 spatial
attention gate U-Net (Attention U-Net, Dice: 0.772
± 0.123, RVE: 19.77 ± 18.41%),61 spatial and channel
“squeeze and excitation” blocks with U-net (ScSE U-Net,
Dice: 0.780 ± 0.125, RVE: 18.85 ± 16.69%),66 and light-
weight power efficient and general purpose CNN
(ESPNetv2, Dice: 0.698 ± 0.148, RVE: 23.69 ± 20.26%).67

Our proposed COLI-Net approach showed good perfor-
mance compared to previous studies with a Dice coeffi-
cient of 0.91 ± 0.038 (95% CI: 0.90–0.91) and RVE of 0.38
± 1.2% (95% CI: 0.16–0.59) for pneumonia infectious
lesions.

A large labeled dataset is required to build a robust
and generalizable model while avoiding overfitting. Pre-
vious studies attempted to transfer the knowledge from
natural to medical imaging domain, leading to improved
accuracy by addressing the issue of limited datasets.37,38

TL was recently applied for the detection and classifica-
tion of COVID-19 using chest x-ray and CT images.68,69

More recently, Wang et al.70 applied four TL methods on
COVID-19 CT images for the segmentation of infectious
lesions using 3D U-Net. The information was trans-
formed from cancer and pleural effusion data to COVID-
19 lesion segmentation. The Dice coefficient increased
from 0.673 ± 0.22 to 0.703 ± 0.20 after TL.70 They con-
cluded that the transferability of non-COVID-19 data
improved the quality of COVID-19 lesion segmentation
to build a robust segmentation model. In our study, we
exploited TL from a large multicentric lung labeled
dataset with various pathologies to overcome the short-
comings of infectious lesion segmentation.

Li et al.71 used thick-section chest CT images of
531 COVID-19 patients for automatic segmentation of
lesions using 2.5D U-net to achieve Dice coefficients of
0.74 ± 0.28 and 0.76 ± 0.29 with respect to manual delin-
eation performed by the two radiologists. The inter-
observer variability measured by the Dice metric was 0.79
± 0.25 between two radiologists. They calculated two
imaging biomarkers, including the percentage of infection
and average infectious HU for severity and progression
assessment, resulting in AUC of 0.97. Thick-section CT
imaging was recommended for high-pitch scans to
decrease the acquisition time and motion artifacts (due to
breath holding) and reduce radiation doses to patients.10,72

In our dataset, various slice thicknesses (1–8 mm) have
been included to train a robust network against this
parameter, which highly impacts image manifestations.
The relative error of volume difference for the percentage
of infections (lesion/lung) and relative mean HU Diff (%)
were 0.22 ± 6.3% (95% CI: �0.95 to 1.4%) and �0.18
± 3.4% (95% CI: �0.8 to 0.44%), demonstrating the high
accuracy of COLI-Net for biomarker generation.

Potential foreseen applications are not limited to the
detection and segmentation but could be useful in provid-
ing diagnostic and prognostic parameters calculated using
lung and infections segmentation to estimate the percent-
age of infections, and enabling advanced image processing
in COVID-19 patients. The existing body of research on
pneumonia suggests that the pneumonia severity index
(PSI) can potentially be used as a severity marker.73 A
recent study classified COVID-19 patients into severe and
nonsevere patients based on PSI calculated using CT
images.74 Different DL algorithms and radiomics analysis
approaches using CT images have been examined recently
for developing diagnostic (discriminating COVID-19 from
bacterial/viral pneumonia) and prognostic (survival, hospi-
tal stay, intensive care unit [ICU] admission, risk of out-
come) models, which require lung and lesion
segmentation.17 Moreover, calculating the percentage of
infection and well-aerated regions in the lung are fre-
quently performed through visual assessment or by simply
calculating HU values in the lungs, which is not only
time-consuming but also lacks accuracy.

The established model exhibited noticeable perfor-
mance variation across different COVID-19 patients col-
lected from different countries, centers, with different
patient backgrounds, and stages of the disease. Since the
quality of CT images depends directly on the scanner
model, imaging protocol (tube voltage, tube current,
pitch factor, etc.), and reconstruction algorithm, we
employed various datasets from different centers to cover
a large variability.10,72 Although the proposed algorithm
was evaluated using a multicenter, multiscanner, multi-
national dataset and patients with a diverse background,
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stages of the disease, a full-scale adaptation of this model
requires further clinical investigation and fine-tuning to
the specific image acquisition parameters of a center.
This framework provides multiple imaging biomarkers
for COVID-19 patients to facilitate the assessment of their
clinical relevance in diagnostic (discriminating COVID-
19 from bacterial/viral pneumonia) and prognostic (sur-
vival, hospital stay, ICU admission, risk of outcome)
applications. Further development should involve
implementing lung lobes segmentation to calculate all
potential imaging biomarkers at the lobes level. In this
study, we used only the ResNet architecture for model
evaluation. However, further evaluations should be con-
ducted to compare different models, including UNet,
VNet, and GAN architectures.

5 | CONCLUSION

We set out to develop an automated algorithm capable of
segmenting 3D whole lung and infected regions in
COVID-19 patients from chest CT images using DL tech-
niques to enable fast, consistent, robust, and human error
immune framework for lung and pneumonia lesion
detection and delineation. Owing to the complex nature
of the problem and high variability in lesion manifesta-
tion, TL from whole lungs to pneumonia infection lesions
was proposed and implemented to enrich specific
COVID-19 pneumonia features identification from clini-
cal studies. Moreover, a multicentric and multiscanner
dataset was collected for the development of the DL
model to establish an automated and generalizable plat-
form for efficient COVID-19 patients management. The
developed AI model was evaluated using a wide range of
COVID-19 patients of diverse populations with different
stages of the disease from multiple centers around the
world to enable big data analysis of COVID-19 for auto-
mated progression/regression assessment of pneumonia
lesions in follow-up studies, provide diagnostic and prog-
nostic metrics, and enable further advanced image
processing.
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