
6531

Physics in Medicine & Biology

Atlas-guided generation of pseudo-CT 
images for MRI-only and hybrid PET–MRI-
guided radiotherapy treatment planning

Hossein Arabi1, Nikolaos Koutsouvelis2, Michel Rouzaud2, 
Raymond Miralbell2 and Habib Zaidi1,3,4,5

1  Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 
Geneva, CH-1211, Switzerland
2  Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
3  Geneva Neuroscience Centre, University of Geneva, Geneva, Switzerland
4  Department of Nuclear Medicine and Molecular Imaging, University of Groningen, 
Groningen, Netherlands
5  Department of Nuclear Medicine, University of Southern Denmark, DK-500, 
Odense, Denmark

E-mail: habib.zaidi@hcuge.ch

Received 18 December 2015, revised 13 July 2016
Accepted for publication 22 July 2016
Published 16 August 2016

Abstract
Magnetic resonance imaging (MRI)-guided attenuation correction (AC) 
of positron emission tomography (PET) data and/or radiation therapy (RT) 
treatment planning is challenged by the lack of a direct link between MRI 
voxel intensities and electron density. Therefore, even if this is not a trivial 
task, a pseudo-computed tomography (CT) image must be predicted from MRI 
alone. In this work, we propose a two-step (segmentation and fusion) atlas-
based algorithm focusing on bone tissue identification to create a pseudo-CT 
image from conventional MRI sequences and evaluate its performance against 
the conventional MRI segmentation technique and a recently proposed multi-
atlas approach. The clinical studies consisted of pelvic CT, PET and MRI 
scans of 12 patients with loco-regionally advanced rectal disease. In the 
first step, bone segmentation of the target image is optimized through local 
weighted atlas voting. The obtained bone map is then used to assess the quality 
of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate 
the performance of the method, a leave-one-out cross-validation (LOOCV) 
scheme was devised to find optimal parameters for the model. Geometric 
evaluation of the produced pseudo-CT images and quantitative analysis of the 
accuracy of PET AC were performed. Moreover, a dosimetric evaluation of 
volumetric modulated arc therapy photon treatment plans calculated using the 
different pseudo-CT images was carried out and compared to those produced 
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using CT images serving as references. The pseudo-CT images produced 
using the proposed method exhibit bone identification accuracy of 0.89 based 
on the Dice similarity metric compared to 0.75 achieved by the other atlas-
based method. The superior bone extraction resulted in a mean standard 
uptake value bias of  −1.5  ±  5.0% (mean  ±  SD) in bony structures compared 
to  −19.9  ±  11.8% and  −8.1  ±  8.2% achieved by MRI segmentation-based 
(water-only) and atlas-guided AC. Dosimetric evaluation using dose volume 
histograms and the average difference between minimum/maximum absorbed 
doses revealed a mean error of less than 1% for the both target volumes and 
organs at risk. Two-dimensional (2D) gamma analysis of the isocenter dose 
distributions at 1%/1 mm criterion revealed pass rates of 91.40  ±  7.56%, 
96.00  ±  4.11% and 97.67  ±  3.6% for MRI segmentation, atlas-guided and 
the proposed methods, respectively. The proposed method generates accurate 
pseudo-CT images from conventional Dixon MRI sequences with improved 
bone extraction accuracy. The approach is promising for potential use in PET 
AC and MRI-only or hybrid PET/MRI-guided RT treatment planning.

Keywords: PET/MRI, attenuation correction, atlas-based segmentation, 
pseudo-CT, radiation therapy, treatment planning

(Some figures may appear in colour only in the online journal)

1.  Introduction

Magnetic resonance imaging (MRI) is increasingly being used and is becoming the modal-
ity of choice in radiation therapy (RT) treatment planning of a number of clinical indications 
(Schmidt and Payne 2015). Likewise, positron emission tomography (PET) provides valu-
able complimentary information to the RT process, especially when combined with computed 
tomography (CT) using hybrid PET/CT scanners. In PET imaging, correcting for photon 
attenuation, which is commonly performed using CT, is essential for accurate quantification of 
tracer uptake and improved lesion detectability. The primary merit of MRI is its capability of 
providing superior soft tissue contrast, which leads to the reliable identification of malignancies 
and precise delineation of target volumes and organs at risk (OAR) compared to CT (Rasch 
et al 2005, Prabhakar et al 2007, Ahmed et al 2010). The organs delineated on MRI should 
be copied on CT images and as such, the two images must be spatially aligned. Manual and/
or automated rigid registration between the MRI and CT scans is commonly used in the clinic. 
However, a mean registration error of approximately 2 mm can be expected in this process 
for body sites such as the prostate, which results in a systematic shift in organ contours and 
may ultimately lead to target under or over-dosage or excessive dose delivery to neighbour-
ing organs (Cattaneo et al 2005, Nyholm et al 2009, Ulin et al 2010). RT treatment planning 
based solely on MRI provides a number of advantages (Brunt 2010, Schmidt and Payne 2015); 
however, excluding CT from the RT chain is not trivial since the MRI signal is correlated to 
proton density and magnetic relaxation properties, not to electron density and linear attenu-
ation coefficients (LACs) of tissues (Mehranian et al 2016). In addition, conventional MRI 
sequences contain no signal or else a very weak signal from cortical bone which makes patient 
setup using digitally reconstructed radiographs (DRRs) practically unfeasible. Since both the 
patient and the treatment machine are virtual, the simulation film or DRR is a reconstructed 
image which resembles a standard two-dimensional (2D) simulation radiograph but which is 
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in practice generated from CT images. The lack of a separate bone tissue class or inaccurate 
bone delineation in the attenuation map (µ-map) has been shown to result in a substantial PET 
quantification bias (Andersen et al 2014, Dickson et al 2014) and dose calculation inaccuracy 
(Dowling et al 2012). Therefore, generation of accurate pseudo-CT images or attenuation maps 
(µ-maps) from magnetic resonance (MR) images for the purpose of PET attenuation correction 
(AC) and dose calculation and patient setup in RT planning is highly desired.

Two different approaches have been used for automatic density assignment or the genera-
tion of pseudo-CT images in MRI-guided PET AC and RT treatment planning: tissue seg-
mentation and atlas-based methods (Fei et  al 2012). In the tissue segmentation approach, 
a µ-map is generated using tissue segmentation followed by the subsequent assignment of 
predefined density (Martinez-Moller et al 2009, Bezrukov et al 2013). To include bony struc-
tures, a specialized dual ultra-short echo time (dUTE) sequence, able to capture transient 
signals from components with a short T2 relaxation time and consequently distinguish bone 
from air (Keereman et al 2010, Berker et al 2012, Edmund et al 2014), was used. However, 
this sequence suffers from a long acquisition time, low signal-to-noise ratio, partial volume 
artefacts and bone prediction errors (Rank et al 2013). On the other hand, atlas-based pseudo-
CT generation can be implemented using conventional MR sequences where bone/air ambi-
guity in the MR images is compensated through the utilization of prior knowledge existing in 
one or multiple atlases of paired CT/MR images aligned to the target MRI spatial coordinates 
(Dowling et al 2012, Arabi and Zaidi 2014, Burgos et al 2014, Uh et al 2014). In combination 
with atlas registration, machine learning techniques have been exploited to generate patient-
specific µ-map (Hofmann et al 2008, Hofmann et al 2011, Chen et al 2014). In addition to 
the above-described pseudo-CT generation methods, joint reconstruction of the activity and 
attenuation-exploiting time-of-flight capability of PET was proposed as an alternative (Rezaei 
et al 2012). In this method, the activity distribution and µ-map are estimated iteratively in an 
alternate way where the prior knowledge present in MRI can be incorporated to constrain the 
final solution space (Mehranian and Zaidi 2015).

It has been demonstrated that atlas-based methods are potentially able to generate reliable 
pseudo-CT images from conventional MR sequences outperforming conventional segmen-
tation-based approaches that neglect bone, thus leading to more accurate PET quantitative 
accuracy (Hofmann et al 2011, Marshall et al 2013, Burgos et al 2014, Arabi and Zaidi 2016) 
and RT planning outcomes (Dowling et al 2012, Noorda et al 2014, Andreasen et al 2015, 
Jonsson et al 2015). Several atlas-based methods have been proposed in brain imaging to take 
the skull into account. Burgos et al (2014) developed an approach to generate synthetic CT 
images using a multi-atlas information propagation scheme where the MRI-derived patient’s 
morphology is locally matched to the aligned dataset of MRI-CT pairs using a robust voxel-
wise image similarity measure. Izquierdo-Garcia et al presented an approach utilizing sta-
tistical parametric mapping (SPM8) software taking advantage of both segmentation and 
atlas-derived features to generate a robust µ-map for AC of brain PET data (Izquierdo-Garcia 
et al 2014). Similarly in the context of MRI-guided RT planning, Sjölund et al (2015) pro-
posed an approach based on a deformable image registration algorithm to generate the elec-
tron density of the head from MR images using a novel atlas fusion scheme. An alternative 
technique enabling the generation of an electron density image without atlas registration is the 
patch-based pseudo-CT generation approach for RT planning based on a library of MR-CT 
image patch pairs (Andreasen et al 2015). Kapanen et al established a relationship between 
T1/T2-weighted MRI intensity and CT values for pelvic bone, thus allowing the estimation of 
patient-specific bone electron density from MRI (Kapanen and Tenhunen 2013).

In this work, we propose a two-step scheme based on the principle of multi-atlas propa-
gation to synthesize a pseudo-CT image from MRI. In the first step, bone segmentation is 
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optimized on the target MRI. The obtained bone label is then utilized together with the mor-
phological similarity between target and atlas images to define voxel-wise weights for the 
atlas fusion task. The proposed method is developed to excel in bone identification for the 
purpose of μ-map generation and MR-only and/or PET/MRI-guided RT treatment planning 
(Paulus et al 2016). This method is evaluated through comparison with conventional segmen-
tation and atlas-based methods using as metrics the accuracy of bone extraction, quantitative 
analysis of tracer uptake and dose distribution errors in the pelvic region.

2.  Materials and methods

2.1.  Image acquisition and processing

The patient population consisted of 12 patients presenting with rectal cancer (loco-regionally 
advanced rectal disease, where the disease spreads only within the region in which it arose as 
opposed to the metastatic disease) who underwent whole body 18F-FDG PET/CT and PET/
MRI examinations. The study protocol was approved by the institutional ethics committee 
and all patients gave informed consent. A single injection of 18F-FDG (171  ±  30 MBq) was 
used to perform both studies sequentially. The PET/CT scans were performed on a Biograph 
64 TruePoint scanner (Siemens Healthcare, Erlangen, Germany). After a localization scout 
scan, an unenhanced low-dose CT scan (120 kVp, 60 mAs, 24  ×  1.5 collimation, a pitch of 
1.2, and 1 s per rotation) was performed for AC. PET data acquisition started 146.2  ±  20 min 
post-injection with a 3 min per bed position for a total of five to six beds, resulting in a total 
acquisition time of 15–18 min.

PET/MRI data acquisition was carried out on the Ingenuity TF PET/MRI scanner (Philips 
Healthcare, Cleveland, OH, USA) (Zaidi et  al 2011). The proposed MRI-derived pseudo-
CT generation approach uses an MRI Dixon volumetric interpolated T1-weighted sequence 
(Dixon 1984) for pelvis examination with the following parameters: flip angle 10°, TE1 1.1 ms, 
TE2 2.0 ms, TR 3.2 ms, 360  ×  360 mm2 transverse field-of-view 0.75  ×  0.75  ×  0.75 mm3 
voxel size, and a total acquisition time of 4.5 min.

Due to the temporal difference between PET/CT and MR examinations, a combination 
of rigid and non-rigid registrations based on normalized mutual information was employed 
to ensure appropriate inter-modal spatial image matching as described in previous work 
(Akbarzadeh et al 2013). The PET/CT data were employed whereas only the in-phase MR 
images from the PET/MRI scan were used in this work. The accuracy of the alignment 
between co-registered MR and CT images was carefully checked visually.

MR images usually suffer from the presence of statistical noise and corruption due to 
the low-frequency bias field (intra-patient intensity non-uniformity) as well as inter-patient 
intensity inhomogeneity (Lotjonen et al 2010). To minimize the adverse effect of the afore-
mentioned factors, in-phase images of all patients underwent the following pre-processing 
corrections. Gradient anisotropic diffusion filtering was employed using a conductance of 4, 
10 iterations and a time-step of 0.01 to suppress statistical noise while preserving prominent 
features and signals in the MR images. Afterwards, N4 bias field correction (Tustison et al 
2010) was employed to remove low-frequency intensity non-uniformity present within sub-
jects (considered as a potential confounder in various image analysis tasks) using a B-spline 
grid resolution of 400, a number of iterations equalling 200, a convergence threshold of 0.001, 
a B-spline order of 3, a spline distance of 400, a histogram bins number of 256, and a shrink 
factor of 3. Histogram matching (McAuliffe et al 2001) with a histogram level of 512 and 
match points equalling 64 was utilized to address inter-subject intensity inhomogeneity in 
MR images.
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2.2.  Pseudo-CT image generation

The atlas database is built based on pairs of spatially-aligned (MRI to CT) in-phase Dixon 
MRI and CT pelvic images. In the first step, all atlas MR images are registered to the target 
MR image through a leave-one-out cross-validation (LOOCV) scheme. Inter-subject coordi-
nate mapping was obtained using a combination of rigid and non-rigid registration based on 
normalized mutual information and B-spline interpolator as described previously (Akbarzadeh 
et al 2013). The registrations were performed using Elastix open source software (Klein et al 
2010). Given the transformation maps, all CT images in the atlas database are then mapped to 
the target MR image using the corresponding transformation maps.

Given these series of MR/CT pairs, a two-step atlas fusion framework was proposed 
to create MRI-guided pseudo-CT. In the first step, bone segmentation of the target MRI is 
optimized through a voxel-by-voxel atlas voting scheme. The output of the first step is a 
binary bone map of the target subject, which can be assumed to represent the most likely 
bone delineation of the target image. The rationale behind this step is that bone identifica-
tion is the major challenge and most important part of MRI-based µ-map generation. This 
enables us to achieve atlas fusion with special emphasis on bony structures. Given an initial 
estimation of the target bone, prior knowledge from atlas CT images can be utilized to 
establish a similarity assessment between them and the estimated target bone to define the 
weights accordingly for the atlas fusion task. In the second step, to generate a continuous-
valued µ-map, an atlas fusion framework is locally optimized according to the resemblance 
to the obtained target bone map and the morphological similarity to the target MR image. To 
formulate this process, we use Mn to denote aligned training MRIs, which are continuous-
valued intensity images with the corresponding bone label maps Ln. The binary bone label 
maps are obtained by applying an intensity threshold on the corresponding aligned CT 
images (atlas CT images after registration) using a Hounsfield unit (HU) value of 140. The 
primary goal of the first step is to estimate the most likely bone label map (L�) associated 
with the target MR image (T). We employed a joint probability of the label map and image 
intensity given the training data.

L p L T M Larg max , , .L n n( { })= |�� (1)

Here, n denotes the index of training subjects in the atlas dataset. We devised our model based 
on the assumption that the target MR image (T) can be a product or mixture distribution of 
either one or some of the training MR images (Mn) whose indices are unknown. In particular, 
the contribution of the training images is allowed to vary spatially (voxel-by-voxel). To form
ulate this relationship, a latent random variable (C(x)) is defined to specify the indices of the 
contributory training images at each voxel (x) in the target image (T). To simplify the optim
ization problem, we assume that the MR intensity values T(x) and the corresponding bone 
label L(x) are conditionally independent (Zhuang and Shen 2016). However, given the latent 
random variable (C(x)), a relationship is established between them in such a way that in this 
model T(x) and L(x) are bound together via (C(x)). At a later stage, we will determine the 
relationships between training MR images (Mn) and the target MRI (T) as well as the target 
bone label (L) and training atlas bone label (Ln). Therefore, the initial conditional independ
ence assumption, which might seem simplistic at first glance, is compensated by C(x) which 
establishes implicit dependency between the bone label and MR intensity. Given the condition 
that each voxel in the target MR image is derived from a single training image specified by 
C(x), the generative model of the target MR image and its corresponding label map through 
the conditional probability would be
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p L T C M L p L x T x C x M L, , , , , , .n n

x

n n(( {   })) ( ( ( ) ( ) ( ) {   }))∏=
As mentioned earlier, L(x) and T(x) are assumed to be conditionally independent. Therefore, 

the above conditional probability can be split into two multiplicative terms (Zhuang and Shen 
2016):

p L x T x C x M L p L x C x L p T x C x M, , , , , .n n n n( ( ( ) ( ) ( ) {   })) ( ( ( ) ( ) { }) ( ( ) ( ) { }))= ×

To simplify the problem, marginalization was calculated over the introduced latent variable 
C(x), resulting in the following formulation:

p L T M L p C p L x T x C x M L, , , , , .n n
C x

n n(( {   })) ( ) ( ( ( ) ( ) ( ) {   }))∑ ∏=

Since there is no prior assumption about the degree of contribution of the atlas images to 
the final bone label map, C(x) takes a constant value (P(C(x))  =  Const.). Therefore, the bone 
segmentation would turn into the form:

L x p T x M x p L x L xarg max .
L

n

N

n n n n

1

( )   (( ( ) ( )))  (( ( ) ( )))∑= | |
=

�� (2)

where N is the number of training subjects in the atlas dataset. Considering equation  (2), 
the estimated bone label at each voxel (L x( )� ) depends on the image morphology likelihood 
p T x M x,n n( ( ) ( )) between the target and the atlas MR images together with the second term 
p L x L x,n n( ( ) ( ))  which is called label prior (L x( ) is the bone label of the target image). The 
main objective in defining the image morphology likelihood is to give greater weights to simi-
lar atlases. To achieve this goal, the similarity measure has to provide discriminative infor-
mation about the underlying structures and at the same time be robust to intensity variation 
across patients. The phase congruency map (PCM) has been shown to be a robust image 
feature against the inter-subject intensity variation and provides valuable information about 
the prominent structures of the image (Kovesi 2000). In the PCM, the local Fourier comp
onents of the image are all in phase (congruent) in locations where there are meaningful edges 
in the image. A PCM can be used to detect structural characteristics of an image, such that 
it is invariant to image intensity and adequately robust to noise (Kovesi 2000). Equation (3) 
calculates the phase congruency of an image at location x where xEnloc( ) represents the local 

energy of the image defined as x F x HEnloc
2 2( ) ( )  = + , where F(x) is the image signal with 

its DC component removed, H is the Hilbert transform of F(x), and Tr is an offset to avert the 
effect of noise on the calculation of the local energy (T M kr r r  σ= + ). The mean noise response 
(Mr) and variance r

2σ  represent the Rayleigh distribution of the noise energy response. k usu-
ally takes a value of 2 or 3; Fm indicates the amplitude of the mth Fourier component, and ε is 
a small value to avoid division by 0 (Kovesi 2000, Ortiz and Martel 2012). Figure 1 depicts a 
representative example of PCM computation on the target and one of the MR images from the 
atlas dataset. The prominent signal in the original images is nicely reflected on PCMs regard-
less of intensity variation and noise.

x
x T

F x
PCM

En
.

m m

loc r( ) ⌊ ( ) ⌋
( )∑ ε

=
−
+� (3)

Considering the PCM as a proper image feature measure, we adopted a Gaussian dis-
tribution on the PCM of target and MR atlas images with a stationary variance σ2 as the 
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image morphology likelihood term (equation (4)). A representative example of equation (4) 
is depicted in figure 1.

p T x M x T x M x
1

2
exp

1

2
PCM PCM .n n n

2 2
2(( ( ) ( ))) ( ( ( )) ( ( )) )

⎡
⎣⎢

⎤
⎦⎥πσ σ

| = − −

�

(4)

On the other hand, to define the label prior term p L x L xn n(( ( ) ( )))| , a signed distance trans-
form from the bone label map (Ln) of the atlas dataset was computed; based on which a label 
prior term was formed via

p L x L x
x

D x
1

Nr
expn n n(( ( ) ( )))

( )
( ( ))ρ| =� (5)

where D xn( ) denotes the signed distance transform of the bone label map on the training sub-
ject n, which is assumed to be positive inside bony structures and negative otherwise; ρ  >  0 is 
the slope constant, and x D xNr expt n

t
1

2( ) ( ( )) ρ= ∑ =  is the partition function used for normal-
ization, where the summation is over the number of labels (here equal to 2—background and 
bone). A representative image of a binary bone mask and its corresponding bone probability 
map calculated using equation (5) is given in figure 2.

The output of this step (L�) is presumed to be the most likely bone segmentation of the 
target MR image. In the next step, this bone segmentation, which is a binary map, is used as 
a baseline to evaluate the registration accuracy and define weighting factors for each subject 
of the training dataset. To generate continuously valued pseudo-CT images, the atlas fusion 
task is achieved through equation (6) where ACTn(x) is the CT value of the nth atlas image at 
voxel x.

Figure 1.  Representative slice of MR images and their corresponding PCMs. (a) Target 
MR image; (b) well-aligned atlas MR image; (c) poorly-aligned atlas MR image; 
(d) PCM of image (a); (e) PCM of image (b); (f) PCM of image (c); (g) morphology 
likelihood between (a) and (b) using equation  (4); and (h) morphology likelihood 
between (a) and (c) using equation (4).
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x
x x

x
LW

ACT
n

N
n n

n

N
n

1

1

( )
( ) ( )

( )
∑
∑
ω

ω
=

×
=

=

� (6)

where xn( )ω  indicates the weighting factor determining the contribution of the nth atlas at 
voxel x to generate the final locally-weighted pseudo-CT (LW). It is defined as:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ω
πα α

πδ δ

= − −

× − −

x T x M x

D x D x

1

2
exp

1

2
PCM PCM

1

2
exp

1

2

n n

n

2 2
2

2 2 B
2

( ) ( ( ( )) ( ( )) )

( ( ) ( ))
�

(7)

where DB indicates the signed distance transform of the obtained bone label of the target 
image (L�). The first term in equation (7) measures the morphological similarity between the 
target and nth atlas MR image (as described in equation (4)) while the second term estimates 
the resemblance of the nth CT atlas image with respect to the presumably ground truth bone 
segmentation of the target MR image (L�). The two Gaussian distributions are adjusted using 
stationary variances α2 and δ2. The free parameters in the above equations, namely α, δ, ρ 
and σ, were optimized via LOOCV and a parameter-sweeping scheme. To find the optimum 
value for each parameter, a range of reasonable values was assigned to the chosen parameter 
while the remaining parameters were kept fixed. Then, the value maximizing the accuracy of 
extracted bone in the final pseudo-CT image is selected. The free parameters α, δ, ρ and σ took 
values of 0.3, 0.25, 1.2, and 0.23, respectively.

2.3.  Comparison of pseudo-CT images

The pseudo-CT images produced by the proposed method, referred to as local weighting 
(LW), was compared with reference CT images (in their original spatial coordinates) as well 
as two other commonly-used methods to generate pseudo-CT images. A common approach 
adopted for AC on hybrid PET/MRI scanners is MR image segmentation of the body into 
a number of tissue classes followed by the assignment of predefined LACs to each tissue 
class. The Philips Ingenuity TF PET/MR uses a three-class µ-map consisting of air, lung 
and soft-tissue to which the following attenuation coefficients are assigned: 0 cm−1 (−1 000 
HU), 0.022 cm−1 (−770 HU), and 0.096 cm−1 (0 HU), respectively (Hu et al 2009). In-phase 
MR images underwent body contour segmentation through connected-component analysis of 
the low intensity surrounding air voxels initiated by manual seeds using ITK-SNAP image 
processing software (Yushkevich et al 2006). A LAC of 0 cm−1 (−1 000 HU) was assigned  

Figure 2.  (a) Representative slice of a binary bone mask obtained by intensity 
thresholding at 140 HU and (b) its corresponding bone probability map calculated using 
equation (5).
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to the surrounding air and 0.096 cm−1 (0 HU) to the body volume (figure 3(c)) to produce a 
water-only µ-map.

The second µ-map evaluated in this work is also generated using a multi-atlas registration 
approach. Given a series of aligned CT images to the target MR image, the pseudo-CT image 
is generated by assigning the median value (MV) of the CT numbers across the entire atlas 
images for each voxel independently (equation (8)).

x x xMV median ACT , , ACTn1( ) ( ( ) ( ))= …� (8)

This approach is equivalent to the well-known majority voting method described in Sjölund 
et al (2015). The major advantage of the median compared to the mean is its robustness to 
outliers and ability to better deal with multimodal distributions. Figure 3(d) shows a repre-
sentative example of the MV µ-map.

2.4.  Image reconstruction and data analysis

The proposed pseudo-CT generation technique was evaluated using three different metrics, 
including accuracy of bone extraction, PET quantification bias and error in calculated dose 
distributions in RT treatment planning. A comparison with the aforementioned techniques was 
also performed using CT images as references.

2.4.1.  Bone extraction.  The evaluation of bone volume extraction (three-dimensional (3D)) 
using the various pseudo-CT images was carried out by comparing the segmented bone from 
the reference CT images using two volume-based measures, including the Dice similarity 
coefficient (DSC) (Dice 1945) and relative volume difference (RVD) (Uh et al 2014).

( ) ( )=
∩
+

= ×
−

A Z
A Z

A Z
A Z

A Z

A
DSC ,

2
, RVD , 100

where, A is the segmented bone from the reference CT image and Z denotes the extracted bone 
obtained the pseudo-CT images. Paired t-test analysis was used to assess if the differences 
between the obtained results are statistically significant using a threshold of 0.05.

2.4.2.  Quantitative PET analysis.  The generated pseudo-CT images of 12 patients were 
used for AC of the corresponding PET data. PET images were reconstructed by means of 
the e7-tool (Siemens Healthcare, Knoxville, TN) using an ordinary Poisson ordered subset 
expectation maximization iterative reconstruction algorithm. Default parameters (four itera-
tions, eight subsets, and a post-processing Gaussian kernel with a FWHM of 5 mm) adopted 
in clinical protocols were applied. PET image reconstruction was performed four times for 
each clinical study using µ-maps derived from CT (PET-CTAC) used as a reference, water-
only (PET-water), the pseudo-CT generated by the MV (PET-MV) and LW approaches (PET-
LW). The differences between the AC techniques were quantified in terms of the change in 
the standard uptake value (SUV). Voxel-based relative mean bias (RMB) and relative mean 
absolute bias (RMAB) were computed for bone, fat and soft-tissue classes using equations (9) 
and (10), respectively.
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where Pv denotes the SUV value of voxel v in PET images corrected for attenuation using the 
pseudo-CT images, and PCT stands for the corresponding reference PET-CTAC. The segmen-
tation of tissue classes was performed based on CT HUs using the following thresholds: bone 
if the HU  ⩾  140, soft-tissue if  −20  <  HU  ⩽  140, and fat if  −350  <  HU  ⩽  −20.

2.4.3.  Dose distribution analysis  The volumetric-modulated arc therapy (VMAT) technique 
was employed for treatment planning using the Eclipse™ treatment planning system (Varian 

Figure 3.  (a) Reference CT; (b) target MRI; (c) water-only µ-map; (d) pseudo-CT 
generated using the MV technique; (e) pseudo-CT generated using the LW atlas fusion 
method.
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Medical Systems Inc., Palo Alto, CA). RT treatments were performed by irradiating target 
volumes defined on the rectum and prostate. The dose differences were calculated on target 
volumes consisting of the gross target volume (GTV), the clinical target volume (CTV), the 
planning target volume (PTV), the rectum and prostate. The patients received radiation doses 
varying between 45 and 60 Gy with a mean dose of 1.5–2 Gy in 30 fractions targeting the 
PTV. In addition to target volumes, the dose calculation was also performed for in-field OAR 
including the left and right femur, bladder, bowel bag, anus, spinal cord, iliac crest, genitalia, 
vagina (two patients), uterus (two patients), penile bulb and bladder wall for each patient. The 
same structure set was associated with both the reference CT and pseudo-CTs as they were 
generated in the same spatial coordinates. All volume and organ delineations were performed 
by a radiation oncologist on the target MRI and were then copied on the reference CT and 
pseudo-CT images. The dose calculation was carried out on each patient’s pseudo-CT. The 
treatment plans were then transferred to the reference CT images and recalculated using same 
structure set and monitor units. The field-of-view and number of slices were kept identical on 
each image series ensuring matched organ contours. Dose volume histograms (DVHs) and 
dose distribution maps were exported for both the reference CT and pseudo-CTs. The DVH 
represents a histogram relating the radiation dose to the tissue volume in RT planning, sum-
marizing 3D dose distributions in a 2D graphical format. The ‘volume’ term in DVH analysis 
stands for a target of radiation treatment or a healthy OAR. Dose calculations were performed 
using the anisotropic analytical algorithm (AAA v. 10) for a 6 MV photon beam and a dose 
matrix of 2.5  ×  2.5  ×  2.5 mm3.

For dose comparisons, the absorbed ‘Dose-max’, ‘Dose-min’ and ‘Dose-mean’ to the tar-
get volumes and the OAR were compared (equation (11)) between plans optimized on the 
reference CT and pseudo-CT images, considering DoseCT and DosepCT as the measured dose 
in the plan calculated on CT and pseudo-CT images, respectively.

Difference 100
Dose Dose

Dose
.

pCT CT

CT
= ×

−
� (11)

Moreover, the DVHs of different organs were used to evaluate the dosimetric differences 
between dose distributions calculated using CT and pseudo-CT images. Given the DVH 
curves, each point on the curves representing a specific dose level was compared with the ref-
erence CT. The percentage point deviation was calculated and averaged for all points of DVHs 
corresponding to each organ absorbed dose using equations (12) and (13) for mean absolute 
errors (MAEs) and mean errors (MEs), respectively.
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where, P represents the total number of DVH points between ‘Dose100%’ and ‘Dose 0%’ in 
dose increments of 0.1 Gy, whereas DpCT(i) and DCT(i) are the accumulated doses in Gy given 
to the volume i in the reference CT and pseudo-CT images, respectively.

The calculated dose distributions using the different pseudo-CTs images were compared 
with the corresponding reference CTs and the volume (cc) receiving a certain amount of dif-
ferent dosage was measured. To this end, the dose difference maps were computed through 
the voxel-by-voxel subtraction of dose values calculated on pseudo-CTs from those of the 
reference CT. Then, at each dose difference level, the associated volume was computed.  
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The measured volumes were plotted versus dose discrepancy ranging from  −1 to 1 Gy. 
Moreover, 2D gamma analysis (Jonsson et al 2013) (evaluated at 2%/2 mm and 1%/1 mm dose 
difference/distance to agreement) was used to analyze axial dose distributions intersecting the 
isocenter. The Gamma test is a widely-used metric for comparing dose distributions, which 
combines features of dose difference and distance-to-agreement (Low et al 1998).

Table 1.  Accuracy of extracted bone (mean  ±  SD) from pseudo-CT images derived 
using LW and MV approaches.

MV P-value LW P-value

DSC 0.75  ±  0.10 0.07 0.89  ±  0.06 <0.05
RVD (%) −18.9  ±  03.8 0.05 −10.9  ±  03.1 0.05

Figure 4.  Representative slices of attenuation error maps for (a) LW; (b) MV; (c) water-
only and SUV bias maps for (d) LW; (e) MV; (f) water-only methods.
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Table 2.  Voxel-wise relative mean  ±  SD (absolute mean  ±  SD) SUV bias for PET 
images corrected for attenuation using the different pseudo-CT images.

Method

Fat Soft-tissue Bone

Mean  ±  SD Mean  ±  SD Mean  ±  SD

(absolute mean  ±  SD) (absolute mean  ±  SD) (absolute mean  ±  SD)

Water-only 7.5  ±  8.3 −5.4  ±  6.2 −19.9  ±  11.8
(8.3  ±  6.8) (9.8  ±  6.8) (21.1  ±  9.9)

LW 2.2  ±  5.5 −2.0  ±  4.1 −1.5  ±  5.0
(5.6  ±  4.5) (5.0  ±  3.9) (4.1  ±  2.2)

MV 4.9  ±  6.1 −4.0  ±  6.2 −8.1  ±  8.2
(7.7  ±  5.9) (7.1  ±  5.2) (11.1  ±  6.2)

Table 3.  Dosimetric errors (relative mean  ±  SD (absolute mean  ±  SD)) for OAR 
calculated using the total number of DVH points between D100% and D0% in dose 
increments of 0.1 Gy employing equations (12) and (13).

Region (OAR)

Water-only MV LW

ME  ±  SD (MAE  ±  SD) ME  ±  SD (MAE  ±  SD) ME  ±  SD (MAE  ±  SD)

Femur R −4.0  ±  3.5 (5.3  ±  1.1) −2.2  ±  1.6 (3.1  ±  1.0) −0.3  ±  1.3 (1.2  ±  0.4)
Femur L −3.9  ±  2.9 (4.8  ±  1.2) −2.2  ±  1.9 (3.2  ±  0.9) 0.5  ±  1.0 (1.1  ±  0.5)
Bladder 2.5  ±  2.4 (3.2  ±  1.4) 1.4  ±  1.4 (3.3  ±  0.9) 0.4  ±  1.4 (1.0  ±  0.4)
Bowel bag 1.4  ±  1.9 (3.6  ±  1.2) 0.9  ±  1.9 (3.2  ±  1.1) 0.1  ±  1.6 (0.9  ±  0.5)
Anus 3.3  ±  2.5 (4.6  ±  1.5) −0.6  ±  2.3 (3.1  ±  0.9) −0.3  ±  1.2 (1.0  ±  0.4)
Spinal cord 3.7  ±  2.6 (4.4  ±  1.6) 1.5  ±  2.0 (3.3  ±  1.0) 0.8  ±  0.9 (1.2  ±  0.4)
Iliac crest −3.2  ±  2.8 (4.3  ±  1.2) 2.1  ±  1.7 (3.0  ±  0.8) −0.4  ±  1.1 (1.2  ±  0.5)
Genitalia 3.5  ±  2.7 (4.2  ±  1.1) −2.8  ±  1.9 (3.1  ±  0.9) 0.7  ±  1.6 (1.1  ±  0.6)
Penile bulb 1.1  ±  2.5 (4.1  ±  1.2) −1.4  ±  1.3 (2.8  ±  0.6) −0.5  ±  1.1 (1.0  ±  0.4)
Bladder wall 3.7  ±  2.7 (4.2  ±  1.5) 0.6  ±  1.5 (2.6  ±  0.7) 0.5  ±  1.0 (1.2  ±  0.3)
Uterus (2 patients) 1.6  ±  2.8 (4.6  ±  1.6) 1.8  ±  1.9 (3.0  ±  0.8) 0.6  ±  0.9 (1.8  ±  0.5)
Vagina (2 patients) 3.5  ±  2.9 (4.8  ±  1.4) 2.7  ±  2.9 (4.4  ±  1.1) 0.8  ±  0.8 (1.3  ±  0.6)

Table 4.  Dosimetric errors (relative mean  ±  SD (absolute mean  ±  SD)) for target 
regions calculated using the total number of DVH points between D100% and D0% in 
dose increments of 0.1 Gy employing equations (12) and (13).

Region (target)

Water-only MV LW

ME  ±  SD (MAE  ±  SD) ME  ±  SD (MAE  ±  SD) ME  ±  SD (MAE  ±  SD)

Prostate 2.1  ±  1.9 (3.2  ±  1.1) 1.2  ±  1.9 (2.8  ±  0.9) 0.4  ±  1.2 (1.2  ±  0.5)
Rectum 2.8  ±  2.6 (3.3  ±  1.2) −1.3  ±  1.6 (2.9  ±  0.8) 0.3  ±  1.0 (1.0  ±  0.4)
PTV-45 2.4  ±  2.8 (3.0  ±  1.1) 1.3  ±  1.1 (2.5  ±  0.7) 0.4  ±  1.1 (0.9  ±  0.3)
PTV-50 3.5  ±  2.7 (4.0  ±  1.0) 2.6  ±  2.1 (3.2  ±  0.7) 0.1  ±  1.2 (0.8  ±  0.4)
CTV-45 3.2  ±  2.9 (4.2  ±  1.0) 2.0  ±  1.2 (2.9  ±  0.6) −0.1  ±  1.3 (1.0  ±  0.3)
CTV-50 3.7  ±  2.8 (4.3  ±  0.9) 2.1  ±  2.3 (3.0  ±  0.8) −0.6  ±  1.4 (1.1  ±  0.5)
GTV 1.3  ±  2.7 (4.0  ±  1.0) 1.0  ±  1.4 (2.9  ±  0.6) −0.7  ±  1.2 (1.2  ±  0.4)
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Figure 5.  Representative slices of dose distributions calculated using (a) CT, (b) LW 
pseudo-CT, (c) MV pseudo-CT and (d) water-only. Dose distribution error maps are 
also shown: (e) LW, (f) MV and (g) water-only.
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3.  Results

Representative slices of the generated pseudo-CTs along with reference MR and CT images 
are shown in figure 3 where visual inspection reveals the considerable improvement brought 
by the proposed method in terms of anatomical structures’ sharpness. Table 1 summarizes the 
results of bone extraction accuracy for LW and MV techniques. It can be observed that the LW 
approach outperforms the other techniques considering all four metrics used (with statistical 
significance proven only for DSCs and sensitivity). Figure 4 depicts SUV and attenuation 
bias maps for the different methods for the same slices shown in figure 3. Voxel-wise SUV 
bias evaluation on PET images corrected for attenuation using different µ-maps considering 
PET-CTAC as the reference are provided in table 2. Likewise, the LW technique leads to a 
significant PET quantification bias reduction, particularly in bone tissue.

RT dose distribution calculations performed using the different pseudo-CT images were 
evaluated based on the resulting DVHs for a number of regions. The results of the analysis 
are presented separately for target volumes and OAR considering that two out of 12 patients 
were female. Therefore, ten contours were defined on the prostate and two on the uterus and 
vagina. Tables 3 and 4 summarize the results of the point-by-point analysis of DVHs between 
the maximum and minimum absorbed dose in dose increments of 0.1 Gy. Dosimetric errors 
are reported in terms of relative mean and absolute mean averaged over 12 patients. Figure 5 
shows a representative dose distribution map calculated using the various pseudo-CT images 
along with dose distribution error maps, taking the one calculated using patient-specific CT 
as a reference. Moreover, the volume associated with a certain magnitude of absolute dose 
difference is presented in figure 6. The measured volume and absorbed dose differences are 
averaged over the entire patient datasets.

For each body organ and target volume, the minimum, mean, and maximum absorbed 
doses calculated using the different pseudo-CT image series were compared. Tables 5 and 6 
present the average differences between the dose distributions calculated using the different 

Figure 6.  Volumes (cc) associated with a certain magnitude of dose difference (Gy) 
between dose distributions calculated using reference CT and different pseudo-CT 
images.
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pseudo-CT images for both OAR and target volumes, whereas figures 7 and 8 depict rep-
resentative DVHs of OAR and target volumes. The 2D gamma analysis of isocenter dose 
distributions evaluated at 2%/2 mm dose difference/distance-to-agreement revealed pass rates 

Table 5.  Average differences (relative mean  ±  SD) between maximum, mean, and 
minimum absorbed doses calculated using different pseudo-CT images and reference 
CT for OAR.

Region (OAR)

Water-only MV LW

(Diff. dose-max (%) (Diff. dose-max (%) (Diff. dose-max (%)

Diff. dose-mean (%) Diff. dose-mean (%) Diff. dose-mean (%)
Diff. dose-min (%)) Diff. dose-min (%)) Diff. dose-min (%))

Femur R −7.1  ±  4.1 −3.2  ±  1.7 −0.5  ±  1.1
−3.0  ±  3.2 −2.2  ±  1.5 −0.4  ±  1.0
−6.2  ±  3.7 −3.0  ±  1.6 −0.5  ±  1.2

Femur L −5.9  ±  3.9 −2.4  ±  1.7 0.8  ±  1.0
−4.0  ±  3.2 −2.1  ±  1.4 0.6  ±  0.8
−4.9  ±  2.7 −2.1  ±  1.5 0.9  ±  1.1

Bladder 3.0  ±  2.5 2.6  ±  1.2 0.7  ±  1.0
2.8  ±  2.2 2.2  ±  1.3 0.6  ±  0.8
2.7  ±  2.4 2.3  ±  1.2 0.8  ±  1.1

Bowel bag 2.9  ±  2.0 2.1  ±  2.1 0.9  ±  1.7
2.8  ±  1.9 2.0  ±  1.8 0.5  ±  1.6
2.8  ±  2.0 2.3  ±  2.0 0.8  ±  1.5

Anus 3.9  ±  2.5 −1.9  ±  2.3 −0.8  ±  1.4
3.7  ±  2.6 −1.4  ±  2.0 −0.6  ±  1.3
3.9  ±  2.6 −1.9  ±  2.1 −0.9  ±  1.5

Spinal cord 4.3  ±  2.6 −2.6  ±  2.1 1.1  ±  1.0
3.9  ±  2.4 −2.5  ±  1.9 0.8  ±  0.9
4.0  ±  2.5 −2.4  ±  2.1 1.0  ±  1.0

Iliac crest −3.9  ±  3.0 −2.6  ±  2.0 −1.0  ±  1.1
−3.2  ±  2.7 −2.2  ±  1.8 −0.9  ±  1.0
−4.0  ±  2.9 −2.9  ±  2.2 −1.1  ±  1.1

Genitalia 3.9  ±  2.8 −3.0  ±  2.1 0.9  ±  1.5
3.6  ±  2.3 −2.8  ±  1.9 0.7  ±  1.4
4.6  ±  2.8 −2.9  ±  1.9 0.9  ±  1.4

Penile bulb 3.5  ±  2.3 −1.9  ±  1.8 −1.2  ±  1.1
3.3  ±  2.5 −1.3  ±  1.5 −0.9  ±  1.1
3.6  ±  2.6 −2.0  ±  1.8 −1.2  ±  1.0

Bladder wall 4.1  ±  2.6  2.7  ±  1.5 0.7  ±  1.1
3.9  ±  2.5 2.2  ±  1.7 0.5  ±  1.0
4.5  ±  2.6 2.9  ±  1.6 0.9  ±  1.1

Uterus (2 patients) 3.4  ±  2.7 2.0  ±  1.7 −0.8  ±  1.0
3.2  ±  2.4 1.5  ±  1.5 −0.6  ±  0.9
3.5  ±  2.8 2.1  ±  1.9 −0.9  ±  1.1

Vagina (2 patients) 3.6  ±  2.4 2.1  ±  1.9 0.6  ±  1.0
3.5  ±  2.5 1.6  ±  1.6 0.5  ±  0.9
3.7  ±  2.7 2.3  ±  2.0 0.7  ±  1.1
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of 99.66  ±  0.39%, 99.65  ±  0.70% and 99.86  ±  0.27% (mean  ±  SD) for water-only, MV 
and LW, respectively. Reducing the evaluation criteria to 1%/1 mm lowered the pass rates to 
91.40  ±  7.56%, 96.00  ±  4.11% and 97.67  ±  3.60, respectively, which remains within clini-
cally-acceptable tolerance.

4.  Discussion

We proposed a surrogate CT generation approach using a two-step optimization paradigm 
to improve the accuracy of bone identification and provide a continuous-valued pseudo-CT 
image at the same time. In the first step, the segmentation is optimized for bone extraction 
from the target MRI, whereby prior knowledge from the atlas CT images is utilized to assess 
the resemblance of bony structures to the target image. Without the initial target bone esti-
mation, the prior knowledge from CT cannot be used in the atlas fusion scheme owing to 
the lack of supposedly ground truth to compare CT images with. It is worth mentioning that 
the initial bone estimation does not represent the bone identification in the final pseudo-CT 
image and only contributes to determine the weights (according to equation (7)) for the atlas 
fusion scheme. The initial step enhances the accuracy of bone extraction by roughly 10% due 

Table 6.  Average differences (relative mean  ±  SD) between maximum, mean, and 
minimum absorbed doses calculated using different pseudo-CT images and reference 
CT for target regions.

Region (target)

Water-only MV LW

(Diff. dose-max (%) (Diff. dose-max (%) (Diff. dose-max (%)
Diff. dose-mean (%) Diff. dose-mean (%) Diff. dose-mean (%)
Diff. dose-min (%)) Diff. dose-min (%)) Diff. dose-min (%))

Prostate 2.9  ±  1.6 1.6  ±  2.0 1.1  ±  1.1
2.2  ±  1.6 1.4  ±  1.9 0.8  ±  10
2.7  ±  1.5 1.9  ±  2.1 1.1  ±  1.0

Rectum 3.7  ±  2.2 −1.7  ±  1.6 0.6  ±  1.0
3.1  ±  2.1 −1.2  ±  1.5 0.3  ±  0.9
3.8  ±  2.4 −1.9  ±  1.6 0.8  ±  1.1

PTV-45 2.8  ±  2.3 1.8  ±  1.0 0.6  ±  1.1
2.5  ±  2.0 1.6  ±  1.0 0.4  ±  1.0
3.0  ±  2.1 1.9  ±  1.1 0.5  ±  1.0

PTV-50 4.1  ±  2.1 2.8  ±  2.1 0.6  ±  1.2
3.9  ±  1.9 2.4  ±  1.7 0.4  ±  1.0
4.0  ±  2.0 2.6  ±  2.0 1.0  ±  1.1

CTV-45 3.6  ±  2.3 2.6  ±  1.5 −0.7  ±  1.4
3.2  ±  2.0 2.1  ±  1.2 −0.3  ±  1.0
3.9  ±  2.4 2.7  ±  1.4 −0.8  ±  1.2

CTV-50 4.2  ±  2.5 3.1  ±  2.6 −1.3  ±  1.2
4.1  ±  2.2 2.5  ±  2.2 −0.6  ±  1.0
4.6  ±  2.5 3.2  ±  2.7 −1.5  ±  1.3

GTV 3.8  ±  2.5 1.9  ±  1.4 −1.0  ±  1.2
3.3  ±  2.4 1.4  ±  1.3 −0.8  ±  1.1
4.0  ±  2.6 2.0  ±  1.6 −1.1  ±  1.2
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to additional emphasis on bony structures. The improvement observed in bone identification 
(DSC of 0.89 instead of 0.75) stems from the effective pattern recognition and local mis-
alignment detection provided by the two-step segmentation and fusion optimization scheme. 
Similar studies were performed using an atlas-based method developed for dose calculation 
and DRR generation using a conjugate electron density database generated from co-registered 
CT-MRI scans (Dowling et al 2012). Comparisons made using 26 whole-pelvic scans revealed 
an agreement (based on the DSC metric) of 0.79  ±  0.12 and 0.64  ±  0.16 for the pelvic bone 
and the bladder, respectively. In a more recent study conducted by Andreasen et al (2015), a 
patch-based pseudo-CT generation method was proposed and compared with a Gaussian mix-
ture regression model using dUTE scans (Johansson et al 2011) and a multi-atlas information 
propagation approach (Burgos et al 2014). The patch-based method yielded a DSC of 0.84 for 
bone volume while the multi-atlas and the Gaussian mixture regression approaches resulted in 
a DSC of 0.83 and 0.67, respectively. It should be noted that this comparison was performed 
using cranial MRI/CT scans of five patients.

Voxel-wise evaluation of PET quantification bias indicated the superior performance of the 
proposed method over water-only (or a three-class MRI segmentation-based µ-map) mostly 

Figure 7.  Representative DVHs of dose distributions calculated using different pseudo-
CT images for OAR, namely (a) anus, (b) spinal cord, (c) left femur, (d) iliac crest,  
(e) genitalia, (f) right femur, (g) penile bulb, (h) bladder wall, (i) bladder, (j) uterus,  
(k) vagina, and (l) bowel bag.
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due to the considerable improvement of bone extraction accuracy. Ignoring bony structures 
(water-only µ-map) resulted in a mean SUV bias of  −19.9  ±  11.8% while the MV method 
yielded a mean bias of  −8.1  ±  8.2%. This is in agreement with results reported by Paulus et al 
(2015) where a mean SUV bias of  −25.5  ±  7.9% was obtained in bone regions using a four-
class µ-map ignoring bone, which was reduced to  −4.9  ±  6.7% using a strategy enabling the 
incorporation of bony tissue in the µ-map for whole-body PET/MR imaging. Due to the higher 
photon energy employed in RT (here a 6 MV beam) compared to the energy of annihilation 
photons (511 keV), dose calculation using a different pseudo-CT image series is less sensitive 

Figure 8.  Representative DVHs of dose distributions calculated using different 
pseudo-CT images for target regions, namely (a) the prostate, (b) GTV, (c) PTV_50,  
(d) CTV_45, (e) rectum, (f) PTV_45, and (g) CTV_50.
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to tissue LACs in comparison with PET quantification bias. As such, the dosimetric errors 
summarized in tables 3 and 4 based on DVH analysis exhibit a smaller range of errors among 
the different pseudo-CT generation techniques. However, a similar trend to PET SUV bias is 
observed where a water-only map yielded the largest errors while the LV technique resulted 
in less than 1% errors for all target volumes and OAR. Similarly, Kapanen and Tenhunen 
(2013) compared their pseudo-CT generation method against water-only pseudo-CT and ref-
erence CT considering a treatment plan for the pelvic region optimized for 15 MeV photons. 
Maximal dose differences between water-only and their proposed pseudo-CT with respect 
to reference CT for all points contained within the PTV were 3.7% and 1.2%, respectively. 
Therefore, our results (tables 3 and 4) are in agreement with the range of dosimetric errors 
reported in the literature.

Dose comparison results between maximum, mean and minimum absorbed doses in dif-
ferent target volumes and OAR indicated a larger range compared to DVH analysis with 
a maximum error in large bony structures, such as the left and right femurs. Jonsson et al 
(2015) reported a maximum dose difference of  −5.9  ±  7.9% using an ultra-short echo time 
-based pseudo-CT approach in the head region. For the prostate, Kim et al (2015) evaluated 
two pseudo-CT generation methods and reported mean dose errors of 1.22% and 0.54% 
for both techniques. Apart from the relatively low dosimetric errors achieved using the 
LW technique, the standard deviation of measured errors, for either the DVH analysis or 
minimum–maximum dose comparison, exhibited significant reduction compared to those 
obtained using water-only and MV techniques. Moreover, gamma analysis demonstrated the 
efficiency of the proposed method where 97.67  ±  3.60% of voxels passed the evaluation 
criteria of 1%/1 mm compared to 95.85% reported in another study focusing on the brain 
region (Jonsson et al 2015).

The outcome of this algorithm does not depend on the MRI sequence used as long as the 
target and training atlas images originate from the same MRI sequence. However, if the used 
MR sequence provides better image quality in terms of the signal-to-noise ratio, this enhances 
the performance of the registration algorithm and feature extraction capability, which in turn 
will improve the outcome.

5.  Conclusion

A novel atlas-based pseudo-CT generation approach was proposed using a clinically-available 
conventional Dixon MRI sequence for the pelvic region. The superior performance of the pro-
posed method was demonstrated using clinical studies in terms of bone identification, reduc-
tion in PET quantification bias, and reduction in dose distribution calculation errors for RT 
treatment planning compared to conventional methods. The proposed method can be easily 
applied to other body regions, such as the brain, and even to whole-body imaging. The pro-
posed method has promising potential applications in either MRI-only or PET/MRI guided 
RT treatment planning or MRI-guided AC in hybrid PET/MR imaging.
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