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Abstract—Recently emission imaging exploiting Compton scat-
tered radiation has been shown to be a feasible three-dimensional
imaging modality, in particular for medical imaging. It exhibits
several advantageous features among which the possibility of
acquiring data using a stationary detector, instead of a moving
one as in standard emission tomography imaging modalities.
But measurements of scattered photons require high energy
resolution detectors. Nowadays progress in detector technology
allows to reach higher and higher energy resolution [1]–[3].
In this work, we consider the effect on image reconstruction
of the finite energy resolution ∆E of a realistic collimated
gamma camera. Approximate reconstruction methods are used
to evaluate the image quality of the reconstructed object. It was
observed that when ∆E is very small, the relative mean quadratic
error is rather stable with respect to increasing values of n, the
number of energy channels detected, but it becomes fluctuating
as ∆E gets larger and larger. Conversely for given n, the relative
mean quadratic error increases with ∆E. Results obtained using
a simple phantom are also presented for various values of n and
∆E.

I. INTRODUCTION

Emission imaging using Compton scattered radiation has

been established since 2002 [4]. The derivation of the basic

principles of image formation using only scattered photons

lead to the introduction of the Compounded Conical Radon

Transform (CCRT), which turned out to be invertible and

paved the way to three-dimensional (3D) object reconstruction.

This has been tested by numerical simulations [5] and has

shown potential for possible applications in nuclear medicine

emission and transmission imaging [6]. It should be empha-

sized that this imaging concept requires cameras equipped with

very high energy resolution detectors.

In this work, we consider the effect of the finite energy

resolution ∆E of a realistic gamma camera on image recon-

struction quality. Given that scattered photons of energies in

the interval [E − ∆E/2, E + ∆E/2] contribute to the image

formation process, which is now modeled by a modified CCRT

(mCCRT), we use the mCCRT to generate n sets of data (n

is the number of energy channels).

For approximate image reconstruction, the known inversion

formula of the CCRT is adapted to two cases: a point source

and a 3D phantom.
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II. IMAGE FORMATION

To focus on the studied topic, attenuation will not be taken

into account and isotropic primary emission is assumed (Fig.

1). The number of photons hitting a scattering site M in the

solid angle dΩM , after being emitted from volume element

dVS around point source S, where the activity density f(S),

is:
f(S)

4π
dVS dΩM .

Then the scattered photon flux emerging from site M in the

direction of D per unit time and per unit solid angle is given

by
f(S)dVS

4π

1

SM2
ne(M) r2

e P (ω) dVM .

where P (ω) is the Klein-Nishina scattering probability, re the

S ω

D θ

dΩ

dΩ
′ px

dVS dξ
dVM

dη
M

dρ

py

Fig. 1. Schematic diagram illustrating Compton scattering physical quantities
and variables used in the mathematical formulation of the proposed approach.

classical electron radius and ne(M) the electron density.

The detected photon flux density at D is g(D, ω) given by

g(D, ω) =

∫

dxMdyM

dzM

z2
M

δ(xD − xM )δ(yD − yM )ne(M)

×

∫

f(S)dVS

4π

δ(cone)

SM2
r2
eP (ω),

where δ(cone) restricts the integration on S to a cone (Fig. 2).

g(D, ω) is the Compounded Conical Radon Transform

(CCRT) of f(S). Now as the energy resolution is finite,

one needs to perform a summation over ω in the interval

[E − ∆E/2, E + ∆E/2]. The relationship between E and ω

is given by the well known Compton formula. The measured

quantity is actually

G(D, ω,∆E) =

∫

∆E

dω g(D, ω).
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Fig. 2. Illustration of the Compounded Conical Radon Transform (CCRT).

This new integral transform is a modified Compounded Coni-

cal Radon Transform (mCCRT). To get an idea of the influence

of the energy resolution, we adapt the inversion formula

established for the CCRT to the data G(D, ω, ∆E) and study

the deviation of the reconstructed object as compared to the

original object as functions of ∆E.

III. SIMULATED IMAGING SYSTEM

A. Detector module

We consider an imaging system equipped with a parallel

hole collimated detector having the following characteristics:

• it is made of 64 × 64 square pixels of 3 mm size,

• the number of detected photons for each pixel are as-

signed to the pixel center, for each energy channel,

• the time unit is 10 seconds and the surface unit is the

pixel area (9 mm2),

• there are n energy channels between E0, the primary

emitted energy, and En+1, the backscattered energy. Thus

for i ∈ {1...n}, the ith channel energy is given by

Ei =

(

E0 −
E0 − En+1

2n

)

− i.∆E.

B. Source and scattering medium

We consider an object consisting of an emitting cube made

of 64 × 64 × 64 volume elements (voxels), each of them

is a cube of side 3 mm. This object is immersed in a cubic

scattering medium, the centers of the cubes are located on

a same site and their sides parallel. The number of emitted

photons per voxel and per unit time is assigned to its center.

Moreover we assume that the detector plane is parallel to one

cubical face of the scattering medium at a distance of 100 mm.

C. Numerical simulations

For each energy channel Ei and each detection site, we use

the mCCRT to compute the received number of photons, as

explained above. The number of photons, detected at a given

energy inside a pixel is calculated as a weighted sum of the

number of photons received par unit time and per unit area on

points of the pixel.

The number of photons detected inside an energy interval

in a pixel will also be calculated as a weighted sum of the

number of photons received by a pixel for series of energy

channels inside the energy interval chosen above.

In this study, we have performed simulations for the energy

channels En = {64, 80, 96, 112, 128} and for ∆E = {0.1,

0.2, 0.4, 0.8, 1.2, 1.6, 2, 2.5, 3} keV.

IV. RESULTS

A. The two-dimensional case

In this section, we present the reconstruction results in the

two dimensional case using numerical reconstruction methods

(instead of using an approximate analytical inversion formula

as in the 3D case) in order to evaluate the influence of energy

resolution on image quality. The same assumptions remain

valid throughout.

The square scattering medium has dimensions X = 30 cm

× Y = 15 cm, which correspond to 64×32 voxels. The linear

detector parallel to the square scattering medium along the X-

direction has 96 linear pixels. We also consider n = 32 energy

channels distributed from primary energy E0 to backscattered

energy En+1. The original objet is a square formed by 12

points in the middle of the scattering square medium. The

most laborious task is the computation of the ”weight” matrix

in this numerical inversion procedure for implementation of

the conjugate gradient reconstruction technique [7], [8]. The

results are presented in Fig. 3.

Fig. 3. Impact of energy resolution on reconstructed image quality.

To estimate the influence of energy resolution on recon-

struction, we give the behavior of two metrics reflecting the

error as a function of ∆E in Fig. 4.

- ǫf is the error between the original object and the

reconstructed object,
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- ǫg is the error between reconstructions with and without

consideration of the finite energy resolution.

Fig. 4. Plots of ǫf , ǫg , and CG number of iterations as functions of ∆E

B. The three-dimensional case

1) Point source object: By assigning zero activity to all

voxels except the center voxel of a cubic scattering medium,

we simulate a point source for which we assign an activity cor-

responding to 131, 868 10
6 photons emitted per unit time. To

measure the reconstruction error as compared to the original

object, we use two different quantities, the relative arithmetic

mean error (ERAM) and the relative quadratic mean error

(ERQM) given by the following equations:

ERAMmax =
1

M

M
∑

l=1

|O∗
(l) − O(l)|

maxl O(l)
, (1)

and

ERQMmax =

√

√

√

√

1

M

M
∑

l=1

(

O∗(l) − O(l)

maxl O(l)

)2

, (2)

where M is the number of reconstructed voxels (here 64 ×
64 × 64), O(l) the lth voxel of the original object and O∗

(l)

the lth voxel of the reconstructed object.

The results for different values of ∆E and n for the point

source simulation are summarized in Table 1.

2) 3D phantom object: To measure the reconstruction error,

we introduce the related quantity:

ERAM =
1

M ′

M ′

∑

l′=1

|O∗
(l′) − O(l′)|

|O(l′)|
(3)

∆E n=64 n=80 n=96 n=112 n=128

0.8 0.197 0.190 0.187 0.184 0.182

1.2 0.214 0.197 0.201 0.201 0.203

1.6 0.240 0.218 0.227 0.251 0.295

2 0.249 0.257 0.300 0.424 0.778

2.5 0.287 0.389 0.642 0.858 0.689

3 0.554 0.748 0.996 0.766 0.633

TABLE I
RECONSTRUCTION RELATIVE QUADRATIC MEAN ERROR(ERQMmax)

ERQM =

√

√

√

√

1

M ′

M ′

∑

l′=1

(

O∗(l′) − O(l′)

O(l′)

)2

(4)

where M ′ is the number of voxels having non zero values,

O(l′) is the l’th non zero voxel of the original object and

O∗
(l′) the l’th voxel of the reconstructed object.

Fig. 5 shows the original 3D phantom represented plane

by plane. The two following figures (Figs. 6 and 7) illustrate

reconstruction results for different values of the number of

energy channels n and energy resolution ∆E. As can be seen

on those examples, significant degradation of the image quality

can occur when the energy resolution decreases.
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Fig. 5. Plane by plane representation of the original object.
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Fig. 6. Plane by plane representation of the reconstructed object for n = 128

and ∆E = 0.1 keV.
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Fig. 7. Plane by plane representation of the reconstructed object for n = 64

and ∆E = 3 keV.

V. CONCLUSION

As far as the point source study is concerned, we observe in

both cases that for very small ∆E, the relative mean quadratic

error is rather stable with respect to increasing values of

n but it becomes fluctuating as ∆E gets larger and larger.

Conversely for a given n, the relative mean quadratic error

increases with ∆E. Therefore, it is clear that the image quality

is strongly dependent on ∆E and the approach might find

applications only on imaging systems with excellent energy

resolution.

For the numerical phantom study, the effects of both n

and of ∆E are similar. For n ≥ 96 and ∆E ≤ 0.4,

the reconstruction quality seems to be acceptable although

blurred owing to the approximate reconstruction algorithm

used. Again overall, it seems that ∆E is the most important

disturbing factor affecting the resulting reconstructed image

quality.
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