

Développement et validation d'une méthode d'analyse utilisant l'électrophorèse capillaire pour le dosage de principes actifs contenus dans différentes formulations pharmaceutiques

But:

- ✓ Electrophorèse capillaire
- ✓ Développer une seule méthode CE
- √ Valider la méthode proposée
- ✓ Utiliser cette méthode pour l'analyse de routine

rincipes actifs (pKa):

Adrénaline (8.7, 10.2, 12.0)

- •Adrénaline 0.1 mg/ml ampoule 10 ml
- Adrénaline 1 mg/ml ampoule 5 ml

Atropine (9.9)

- •Atropine sulfate 0.1 mg/ml seringue 10 ml
- •Atropine collyre 0.5 % flacon 1 ml

Cocaïne (8.6)

•Cocaïne collyre 5 % flacon 3 ml

Codéine (8.2)

•Codéine phosphate sirop 0.25% bt 100 ml

Ephedrine (9.6)

•Ephédrine HCl 10 mg/ml seringues 2 ml

Homatropine (9.9)

•Homatropine HBr collyre 2 % flacon 3 ml

Injection ophtalmique faible

flacon 2 ml

(phénylephrine + homatropine)

Isoprénaline (8.6, 10.1, 12.0)

•Isoprénaline 0.1 mg/ml seringue 50 ml

Kétamine (7.5)

Ketamine 1 mg/ml

Lidocaïne (7.9)

•Lidocaïne 4 % bt 100 ml

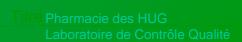
Morphine (8.0, 9.9)

•Morphine colorée 2%

Oxybuprocaïne

•Novésine collyre 1 % flacon 1 ml

Phényléphrine (8.9, 10.1)


•Phényléphrine HCl 0.1 mg/ml seringue 10 ml

Scopolamine (7.6)

•Scopolamine HBr collyre 0.25 % flacon 3 ml

Tetracaïne (8.5)

•Tétracaïne HCl 5 % bt 30 ml

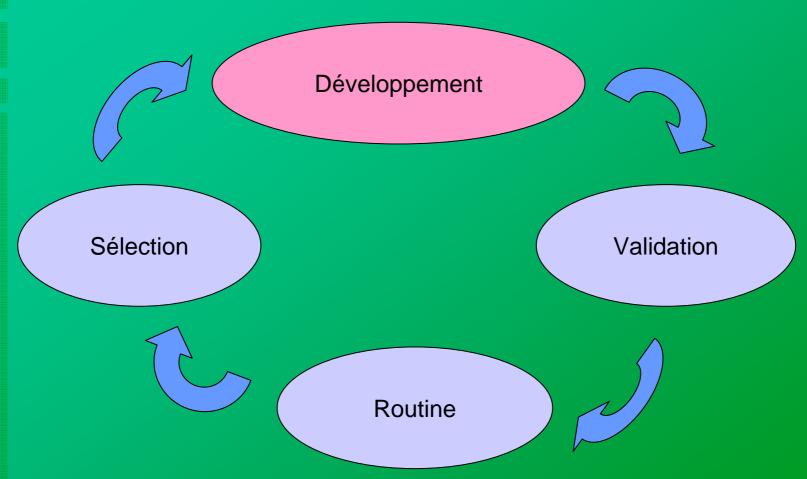
Etat actuel dans le laboratoire de contrôle qualité des HUG

HPLC:

- Méthodes pharmacopée utilisent des techniques HPLC traditionnelles (colonne remplie avec phase stationnaire C18/C8, 12 –25 x 4.6 mm x 5 mm, dp 5 μm)
- Colonnes différentes pour différents PAs
- Équilibration de la colonne
- ✓ Solvants organiques
- ✓ Prix

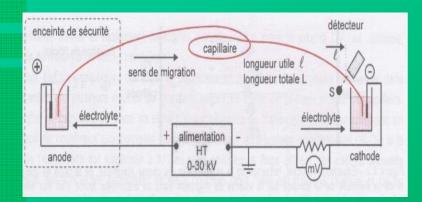
temps d'analyse de 10 - 30 min

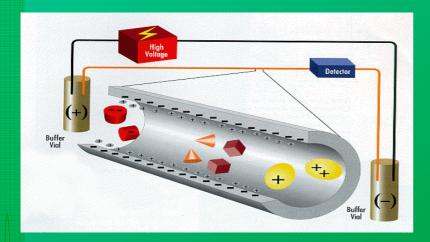
Electrophorèse capillaire: alternative



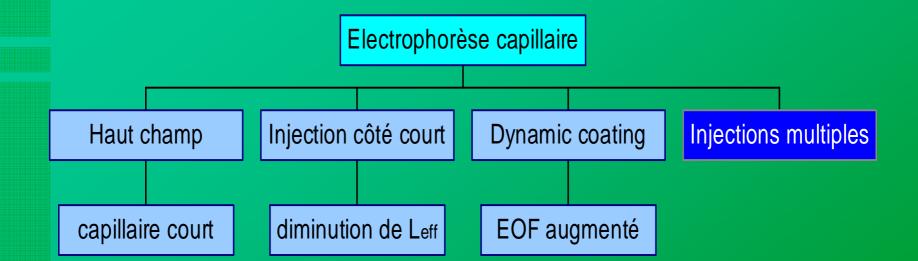
Les PAs analysés ont un caractère basique

Méthode alternative: CE


- ✓ Permet des analyses plus rapides à moindre coût
- ✓ Est meilleur marché
- ✓ Écologique: peu ou pas de solvant organique.
- ✓ Développement rapide de méthode



Electrophorèse capillaire conventionnelle



CE conventionnelle:

- \checkmark Capillaire: L_{tot} = 64.5 cm, L_{eff} = 56 cm, 50 μm de d.i.
- √ Voltage: 30 kV (instrumentation)
- ✓ Détecteur: UV-Vis
- ✓ Température: 25 °C
- √ Volume d'injection: 1% de la L_{eff} du capillaire
- ✓ Electrolyte: tampon Tris phosphate, pH acide

La CE rapide

$$t_{mig} = \frac{L_{eff}L_{tot}}{\mu_{app}U}$$

$$\mu_{app} = \mu_{eff} + \mu_{EOF}$$

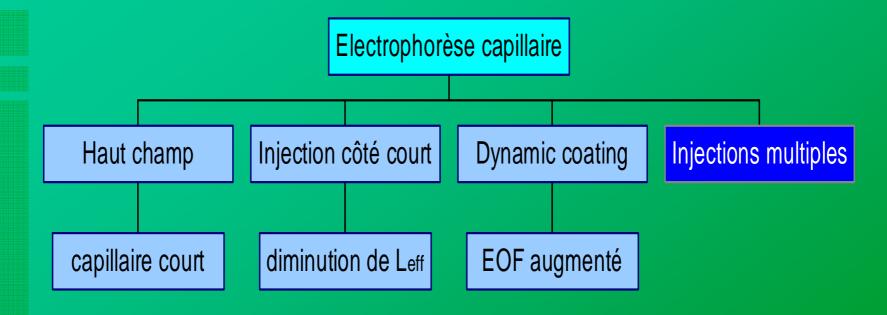
$$N = \frac{\mu_{app}U}{2D} \frac{L_{eff}}{L_{tot}}$$

CE haut champ (HEF)

$$t_{mig} = \frac{L_{eff} L_{tot}}{\mu_{app} U}$$

Réduction de la longueur totale du capillaire à 32.5 cm

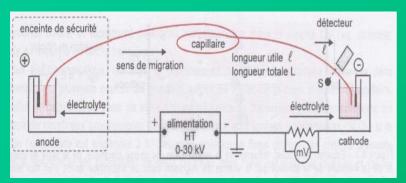
✓ Diminution du temps de migration


à l'effet Joule

 $N = \frac{\mu_{app}U}{2D} \frac{L_{eff}}{L_{tot}}$

- ✓ Diminution de l'efficacité
- Diminution de la résolution

La CE rapide


$$t_{mig} = rac{L_{eff}L_{tot}}{\mu_{app}U}$$

$$\mu_{app} = \mu_{eff} + \mu_{EOF}$$

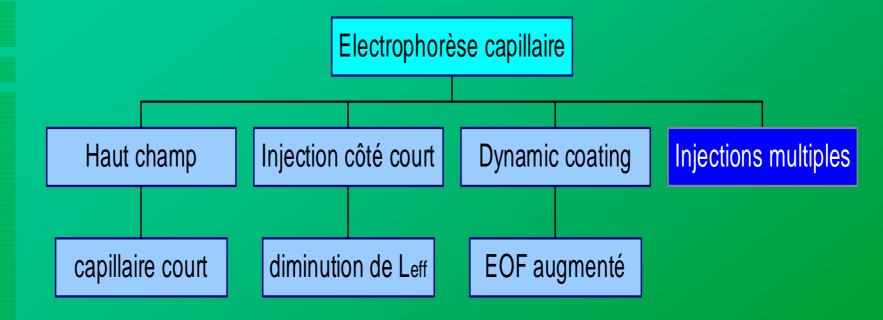
$$N = \frac{\mu_{app}U}{2D} \frac{L_{eff}}{L_{tot}}$$

Injection du côté court (SEI)

Diminution de la longueur effective du capillaire (8.5 cm)

✓ Diminution de t_{miq}

$$t_{mig} = \frac{L_{eff} L_{tot}}{\mu_{app} U}$$


$$N = rac{\mu_{app}U}{2D}rac{L_{eff}}{L_{tot}}$$

- ✓ Diminution de l'efficacité
- ✓ Diminution de la résolution

La CE rapide

$$t_{mig} = \frac{L_{eff} L_{tot}}{\mu_{app} U}$$

$$\mu_{app} = \mu_{eff} + \mu_{EOF}$$

$$N = \frac{\mu_{app}U}{2D} \frac{L_{eff}}{L_{tot}}$$

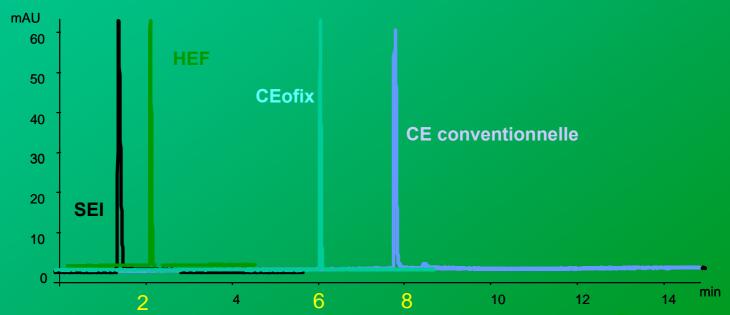
Dynamic coating: CEofix® (DC)

- ✓ Accélération du flux électroosmotique
- ✓ Stabiliser le temps de migration des PAs
- ✓ Conservation / Augmentation de l'efficacité

√Coût

$$t_{mig} = rac{L_{eff}L_{tot}}{\mu_{app}U}$$

$$\mu_{app} = \mu_{eff} + \mu_{EOF}$$


Conditions opératoires: stratégies rapides

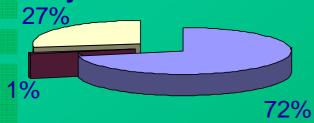
-		
	1	
diff.		
	٦	
4		
4		
ل	10 P	
4ª	9	
Garage .		
)	

Paramètre	Analyse conventionnelle	Analyse à haut champ	Injection du côté court	Revêtement dynamique
L _{tot} du capillaire	64. 5 cm	32. 5 cm	V	$\sqrt{}$
L _{eff} du capillaire	56 cm	24 cm	8.5 cm	
Diamètre interne du capillaire	50 μm	V	√	50 μm – le dynamique coating
Voltage	30 kV avec une rampe de 30	√	√	$\sqrt{}$
Courant	25 μΑ	60 μΑ	V	$\sqrt{}$
Injection	8 sec à 50 mbar (13 nL)	4.5 sec à 20 mbar (4.8 nL)	4 sec à –15 mbar (1.6 nL)	\checkmark
Détection	UV-Vis	V	V	$\sqrt{}$
Temps de réponse	0.1 à 0.2 sec	√	V	$\sqrt{}$
Température	25 °C	V	V	$\sqrt{}$
Electrolyte	Tampon Tris- phosphate, 50 mM, pH 2.5	V	V	$\sqrt{}$

Résultats (substance modèle tetracaïne)

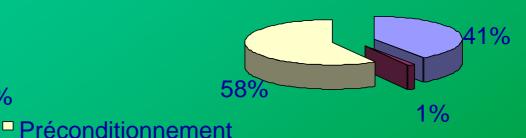
Méthode	Temps de migration [min]	Efficacité [plateaux]	Coût [Frs] / analvse
Analyse conventionnelle	7.773	209179	0.26
Haut champ	2.072	105700	0.26
Injection du côté court	1.734	39945	0.26
court Revêtement dynamique	5.973	376411	1.20

Résultats (substance modèle tetracaïne)


□ Temps d'analyse

réel

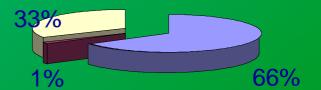
Injection



Analyse conventionnelle

TAT = 10.93 min

Analyse à haut champ


TAT = 5.18 min

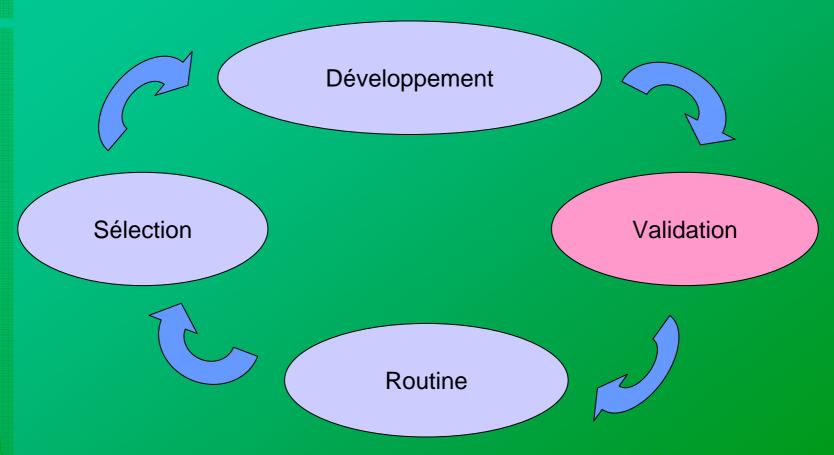
Injection du côté court

TAT = 4.87 min

Revêtement dynamique

TAT = 9.13 min

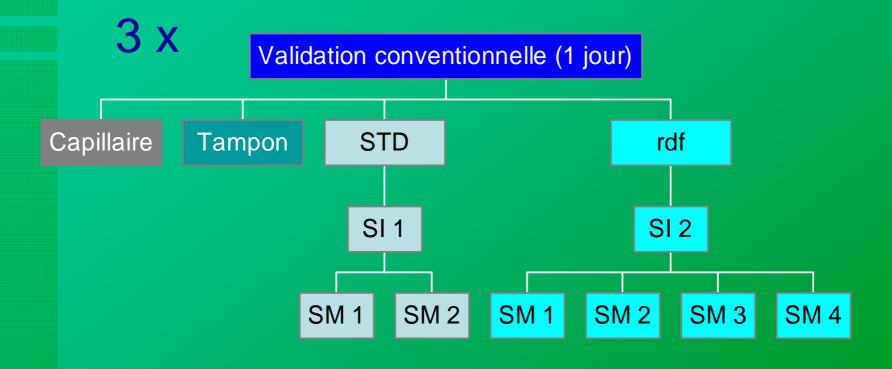
Méthode choisie



Injection du côté court

- ✓ Effet Joule négligeable
- ✓ Diminution du t_{mia} d'un facteur de 4.5
- ✓ Perte en efficacité acceptable
- ✓ Perte en résolution acceptable
- ✓ Facile à manipuler
- Configuration instrumentale flexible
- ✓ Bon marché

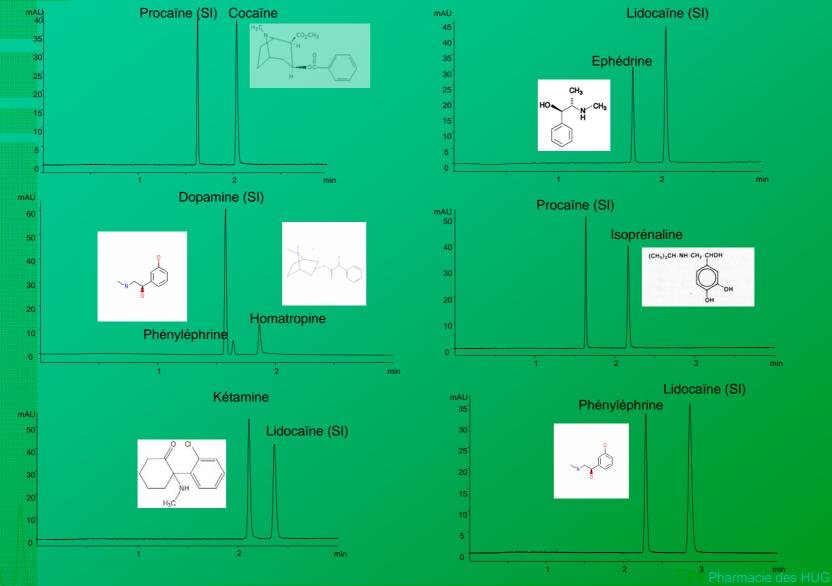
Validation de la méthode injection du côté court


Validation de la méthode injection du côté court: Critères de validation* et limites autorisés (LCQ)

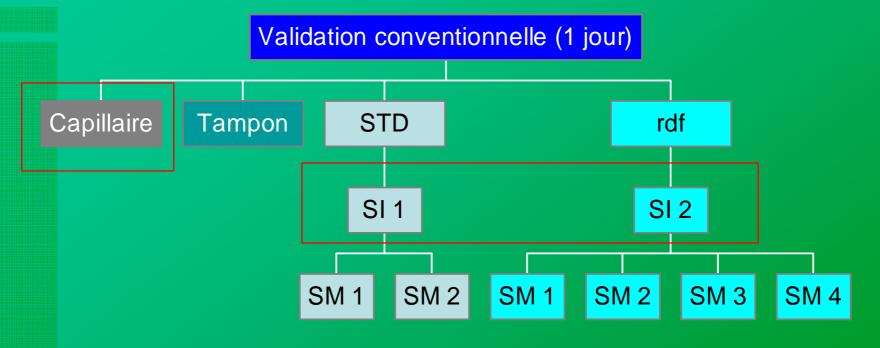
- ✓ Justesse: entre 95 105 %
- √ Répétabilité et fidélité intermédiaire: CV < 3%
 </p>
- ✓ Résolution: > 1.5
- ✓ Linéarité: r² > 0.9900
- ✓ Spécificité de la méthode: dégradation accélérée

*Comission SFSTP (Ph. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L.Valat), STP Pharma Pract., 13, 2003, pages 101-138

Validation conventionnelle:



Méthode validée pour:


Résultats:

- ✓ Justesse : entre 95 105 %
- ✓ CV_R: < 3 % (excepte la phényléphrine)</p>
- ✓ CV_r: < 3 % (excepte l'isoprénaline à 120 %)</p>
- ✓ Linéarité: r² > 0.9900 (excepte l'injection ophtalmique faible jour 3)
 - Injection du côté court simplifiée
 - Injection du côté court en "sandwich"

Validation conventionnelle versus validation simplifiée:

Dilutions (80%, 100%, 120%)

Injection du côté court simplifiée:

Méthodologie	Concen- tration	Justesse	Intervalle de confiance	Répéta- bilité	Fidélité
Injection du	80%	101.6%	6.3%	3.4%	3.4%
côté court conventionnelle	100%	100.5%	8.0%	4.4%	4.4%
	120%	101.6%	8.8%	4.8%	4.8%
Injection du	80%	100.1%	11.0%	1.9%	5.9%
côté court simplifiée	100%	97.4%	4.8%	2.9%	2.6%
	120%	100.5%	5.7%	3.4%	3.2%

Résultats:

- ✓ Justesse : entre 95 105 %
- ✓ CV_R: < 3 % (excepte la phényléphrine)</p>
- ✓ CV_r: < 3 % (excepte l'isoprénaline à 120 %)
- ✓ Linéarité: r² > 0.9900 (excepte l'injection ophtalmique faible jour 3)

- Injection du côté court simplifiée
- Injection du côté court en "sandwich"

Injection du côté court en sandwich:

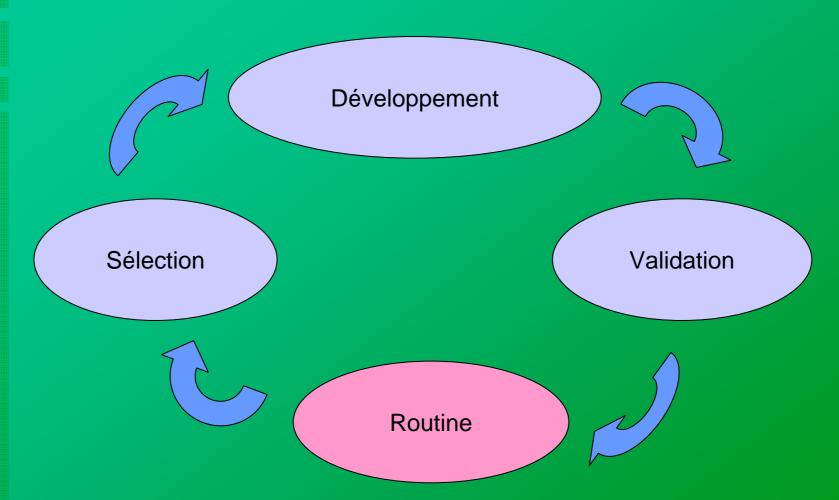
Méthodologie	Concen- tration	Justesse	Intervalle de confiance	Répéta- bilité	Fidélité
Injection du	80%	101.6%	6.3%	3.4%	3.4%
côté court	100%	100.5%	8.0%	4.4%	4.4%
conventionnelle	120%	101.6%	8.8%	4.8%	4.8%
Injection du côté court simplifiée	80%	100.1%	11.0%	1.9%	5.9%
	100%	97.4%	4.8%	2.9%	2.6%
	120%	100.5%	5.7%	3.4%	3.2%
Injection du côté court « sandwich »	80%	100.0%	3.7%	1.4%	2.0%
	100%	97.6%	4.0%	1.8%	2.2%
	120%	96.8%	4.8%	2.5%	2.7%

✓ Avec la stratégie injection du côté court en "sandwich" des meilleurs résultats sont obtenus

Cette stratégie est appliquée aux futures validations

à l'intégration des pics

Intégration: scopolamine


Individu 1:

	Justesse	Répétabilité	Fidélité
80%	101.6%	1.1%	1.5%
100%	100.9%	1.0%	1.4%
120%	100.1%	1.2%	2.3%

Individu 2:

	Justesse	Répétabilité	Fidélité
80%	103.8%	1.9%	3.2%
100%	102.0%	1.1%	2.5%
120%	100.5%	1.3%	2.7%

Analyse de routine:

Principe actif	Valeur obtenue avec la méthode développée	Dosage de référence	Valeur obtenue avec la méthode de référence
Cocaïne	103%	UV	101%
Kétamine	99%	CE conventionnelle	99%
Injection ophtalmique faible : Homatropine	96%	CE conventionnelle	99%
Injection ophtalmique faible : Phényléphrine	100%	CE conventionnelle	97%
Phényléphrine	87%	CE conventionnelle	88%
Ephédrine	107%	HPLC	104%
Isoprénaline	103%	HPLC	105%

Conclusion:

✓ Méthode développée

✓ Validation pour 6 formulations

✓ Analyse de routine

futures validations

Merci pour votre attention

Christina WEBER

